_base_ = [ '../_base_/models/fast-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadProposals', num_max_proposals=2000), dict(type='LoadAnnotations', with_bbox=True), dict( type='ProposalBroadcaster', transforms=[ dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), ]), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadProposals', num_max_proposals=None), dict( type='ProposalBroadcaster', transforms=[ dict(type='Resize', scale=(1333, 800), keep_ratio=True), ]), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( dataset=dict( proposal_file='proposals/rpn_r50_fpn_1x_train2017.pkl', pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( proposal_file='proposals/rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline)) test_dataloader = val_dataloader