tta_model = dict( | |
type='DetTTAModel', | |
tta_cfg=dict(nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) | |
img_scales = [3,4,5,6] | |
tta_pipeline = [ | |
dict(type='LoadHyperspectralImageFromFiles', to_float32 =True, normalized_basis=3000), | |
dict( | |
type='TestTimeAug', | |
transforms=[[ | |
dict(type='HSIResize', scale_factor=s, keep_ratio=True) for s in img_scales | |
], [ | |
dict(type='RandomFlip', prob=1.), | |
dict(type='RandomFlip', prob=0.) | |
], [dict(type='LoadAnnotations', with_bbox=True)], | |
[ | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', | |
'img_shape', 'scale_factor', 'flip', | |
'flip_direction')) | |
]]) | |
] | |