Collections: | |
- Name: DDOD | |
Metadata: | |
Training Data: COCO | |
Training Techniques: | |
- SGD with Momentum | |
- Weight Decay | |
Training Resources: 8x V100 GPUs | |
Architecture: | |
- DDOD | |
- FPN | |
- ResNet | |
Paper: | |
URL: https://arxiv.org/pdf/2107.02963.pdf | |
Title: 'Disentangle Your Dense Object Detector' | |
README: configs/ddod/README.md | |
Code: | |
URL: https://github.com/open-mmlab/mmdetection/blob/v2.25.0/mmdet/models/detectors/ddod.py#L6 | |
Version: v2.25.0 | |
Models: | |
- Name: ddod_r50_fpn_1x_coco | |
In Collection: DDOD | |
Config: configs/ddod/ddod_r50_fpn_1x_coco.py | |
Metadata: | |
Training Memory (GB): 3.4 | |
Epochs: 12 | |
Results: | |
- Task: Object Detection | |
Dataset: COCO | |
Metrics: | |
box AP: 41.7 | |
Weights: https://download.openmmlab.com/mmdetection/v2.0/ddod/ddod_r50_fpn_1x_coco/ddod_r50_fpn_1x_coco_20220523_223737-29b2fc67.pth | |