|
_base_ = '../common/lsj-200e_coco-detection.py' |
|
|
|
image_size = (1024, 1024) |
|
batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] |
|
|
|
model = dict( |
|
type='CenterNet', |
|
data_preprocessor=dict( |
|
type='DetDataPreprocessor', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
bgr_to_rgb=True, |
|
pad_size_divisor=32, |
|
batch_augments=batch_augments), |
|
backbone=dict( |
|
type='ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
norm_eval=True, |
|
style='pytorch', |
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
start_level=1, |
|
add_extra_convs='on_output', |
|
num_outs=5, |
|
init_cfg=dict(type='Caffe2Xavier', layer='Conv2d'), |
|
relu_before_extra_convs=True), |
|
bbox_head=dict( |
|
type='CenterNetUpdateHead', |
|
num_classes=80, |
|
in_channels=256, |
|
stacked_convs=4, |
|
feat_channels=256, |
|
strides=[8, 16, 32, 64, 128], |
|
loss_cls=dict( |
|
type='GaussianFocalLoss', |
|
pos_weight=0.25, |
|
neg_weight=0.75, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='GIoULoss', loss_weight=2.0), |
|
), |
|
train_cfg=None, |
|
test_cfg=dict( |
|
nms_pre=1000, |
|
min_bbox_size=0, |
|
score_thr=0.05, |
|
nms=dict(type='nms', iou_threshold=0.6), |
|
max_per_img=100)) |
|
|
|
train_dataloader = dict(batch_size=8, num_workers=4) |
|
|
|
optim_wrapper = dict( |
|
type='AmpOptimWrapper', |
|
optimizer=dict( |
|
type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004), |
|
paramwise_cfg=dict(norm_decay_mult=0.)) |
|
|
|
param_scheduler = [ |
|
dict( |
|
type='LinearLR', |
|
start_factor=0.00025, |
|
by_epoch=False, |
|
begin=0, |
|
end=4000), |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=25, |
|
by_epoch=True, |
|
milestones=[22, 24], |
|
gamma=0.1) |
|
] |
|
|
|
|
|
|
|
|
|
auto_scale_lr = dict(base_batch_size=64) |
|
|