import gradio as gr import cv2 from PIL import Image import numpy as np from ultralytics import YOLO from huggingface_hub import hf_hub_download import os # Verify paths and Hugging Face repository details REPO_ID = "StephanST/WALDO30" # Replace with the correct repo ID if different MODEL_FILENAME = "WALDO30_yolov8m_640x640.pt" # Replace if the filename is different # Download the model from Hugging Face try: model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILENAME) print(f"Model downloaded successfully to: {model_path}") except Exception as e: raise RuntimeError(f"Failed to download model from Hugging Face. Verify `repo_id` and `filename`. Error: {e}") # Load the YOLOv8 model try: model = YOLO(model_path) # Load the YOLOv8 model print("Model loaded successfully!") except Exception as e: raise RuntimeError(f"Failed to load the YOLO model. Verify the model file at `{model_path}`. Error: {e}") # Detection function for images def detect_on_image(image): try: results = model(image) # Perform detection annotated_frame = results[0].plot() # Get annotated image return Image.fromarray(annotated_frame) except Exception as e: raise RuntimeError(f"Error during image processing: {e}") # Detection function for videos def detect_on_video(video): try: temp_video_path = "processed_video.mp4" cap = cv2.VideoCapture(video) fourcc = cv2.VideoWriter_fourcc(*"mp4v") out = cv2.VideoWriter(temp_video_path, fourcc, cap.get(cv2.CAP_PROP_FPS), (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))) while cap.isOpened(): ret, frame = cap.read() if not ret: break results = model(frame) # Perform detection annotated_frame = results[0].plot() # Get annotated frame out.write(annotated_frame) cap.release() out.release() return temp_video_path except Exception as e: raise RuntimeError(f"Error during video processing: {e}") # Gradio Interface using Blocks with gr.Blocks() as app: gr.Markdown("# Sat ESPR View") gr.Markdown("Upload an image or video to see object detection results.") # Image processing block with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil", label="Upload Image") image_button = gr.Button("Detect on Image") with gr.Column(): image_output = gr.Image(type="pil", label="Detected Image") # Video processing block with gr.Row(): with gr.Column(): video_input = gr.Video(label="Upload Video") video_button = gr.Button("Detect on Video") with gr.Column(): video_output = gr.Video(label="Detected Video") # Set up events image_button.click(detect_on_image, inputs=image_input, outputs=image_output) video_button.click(detect_on_video, inputs=video_input, outputs=video_output) if __name__ == "__main__": app.launch()