scfive commited on
Commit
fc9052c
·
verified ·
1 Parent(s): d51d601

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ import cv2
5
+ import numpy as np
6
+ from huggingface_hub import hf_hub_download
7
+
8
+ # Load the model from Hugging Face
9
+ model_path = hf_hub_download(repo_id="StephanST/WALDO30", filename="WALDO30_yolov8m_640x640.pt")
10
+ model = torch.hub.load('ultralytics/yolov8', 'custom', path=model_path)
11
+
12
+ # Detection function for images
13
+ def detect_on_image(image):
14
+ results = model(image)
15
+ results.render() # Render the bounding boxes on the image
16
+ detected_img = Image.fromarray(results.imgs[0]) # Convert to PIL format
17
+ return detected_img
18
+
19
+ # Detection function for videos
20
+ def detect_on_video(video):
21
+ temp_video_path = "processed_video.mp4"
22
+ cap = cv2.VideoCapture(video)
23
+ fourcc = cv2.VideoWriter_fourcc(*"mp4v")
24
+ out = cv2.VideoWriter(temp_video_path, fourcc, cap.get(cv2.CAP_PROP_FPS),
25
+ (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
26
+
27
+ while cap.isOpened():
28
+ ret, frame = cap.read()
29
+ if not ret:
30
+ break
31
+ results = model(frame) # Run detection
32
+ results.render()
33
+ frame = np.squeeze(results.imgs[0]) # Extract processed frame
34
+ out.write(frame) # Write frame to output video
35
+
36
+ cap.release()
37
+ out.release()
38
+ return temp_video_path
39
+
40
+ # Create Gradio Interface
41
+ image_input = gr.inputs.Image(type="pil", label="Upload Image")
42
+ video_input = gr.inputs.Video(type="file", label="Upload Video")
43
+
44
+ image_output = gr.outputs.Image(type="pil", label="Detected Image")
45
+ video_output = gr.outputs.Video(label="Detected Video")
46
+
47
+ app = gr.Interface(
48
+ fn=[detect_on_image, detect_on_video],
49
+ inputs=[image_input, video_input],
50
+ outputs=[image_output, video_output],
51
+ title="WALDO30 YOLOv8 Object Detection",
52
+ description="Upload an image or video to see object detection results using WALDO30 YOLOv8 model."
53
+ )
54
+
55
+ # Launch the app
56
+ if __name__ == "__main__":
57
+ app.launch()