Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,48 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from PIL import Image
|
4 |
import cv2
|
|
|
5 |
import numpy as np
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
-
#
|
9 |
model_path = hf_hub_download(repo_id="StephanST/WALDO30", filename="WALDO30_yolov8m_640x640.pt")
|
10 |
-
model =
|
11 |
|
12 |
# Detection function for images
|
13 |
def detect_on_image(image):
|
14 |
-
results = model(image)
|
15 |
-
results.
|
16 |
-
|
17 |
-
return detected_img
|
18 |
|
19 |
# Detection function for videos
|
20 |
def detect_on_video(video):
|
21 |
temp_video_path = "processed_video.mp4"
|
22 |
cap = cv2.VideoCapture(video)
|
23 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
24 |
-
out = cv2.VideoWriter(temp_video_path, fourcc, cap.get(cv2.CAP_PROP_FPS),
|
25 |
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
|
26 |
|
27 |
while cap.isOpened():
|
28 |
ret, frame = cap.read()
|
29 |
if not ret:
|
30 |
break
|
31 |
-
results = model(frame) #
|
32 |
-
results.
|
33 |
-
|
34 |
-
out.write(frame) # Write frame to output video
|
35 |
|
36 |
cap.release()
|
37 |
out.release()
|
38 |
return temp_video_path
|
39 |
|
40 |
-
#
|
41 |
-
image_input = gr.inputs.Image(type="pil", label="Upload Image")
|
42 |
-
video_input = gr.inputs.Video(type="file", label="Upload Video")
|
43 |
-
|
44 |
-
image_output = gr.outputs.Image(type="pil", label="Detected Image")
|
45 |
-
video_output = gr.outputs.Video(label="Detected Video")
|
46 |
-
|
47 |
app = gr.Interface(
|
48 |
fn=[detect_on_image, detect_on_video],
|
49 |
-
inputs=[
|
50 |
-
outputs=[
|
51 |
title="WALDO30 YOLOv8 Object Detection",
|
52 |
-
description="Upload an image or video to see object detection results using WALDO30 YOLOv8 model."
|
53 |
)
|
54 |
|
55 |
-
# Launch the app
|
56 |
if __name__ == "__main__":
|
57 |
app.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import cv2
|
3 |
+
from PIL import Image
|
4 |
import numpy as np
|
5 |
+
from ultralytics import YOLO
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
+
# Download the model from Hugging Face
|
9 |
model_path = hf_hub_download(repo_id="StephanST/WALDO30", filename="WALDO30_yolov8m_640x640.pt")
|
10 |
+
model = YOLO(model_path) # Load YOLOv8 model
|
11 |
|
12 |
# Detection function for images
|
13 |
def detect_on_image(image):
|
14 |
+
results = model(image) # Perform detection
|
15 |
+
annotated_frame = results[0].plot() # Get annotated image
|
16 |
+
return Image.fromarray(annotated_frame)
|
|
|
17 |
|
18 |
# Detection function for videos
|
19 |
def detect_on_video(video):
|
20 |
temp_video_path = "processed_video.mp4"
|
21 |
cap = cv2.VideoCapture(video)
|
22 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
23 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, cap.get(cv2.CAP_PROP_FPS),
|
24 |
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
|
25 |
|
26 |
while cap.isOpened():
|
27 |
ret, frame = cap.read()
|
28 |
if not ret:
|
29 |
break
|
30 |
+
results = model(frame) # Perform detection
|
31 |
+
annotated_frame = results[0].plot() # Get annotated frame
|
32 |
+
out.write(annotated_frame)
|
|
|
33 |
|
34 |
cap.release()
|
35 |
out.release()
|
36 |
return temp_video_path
|
37 |
|
38 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
app = gr.Interface(
|
40 |
fn=[detect_on_image, detect_on_video],
|
41 |
+
inputs=[gr.inputs.Image(type="pil", label="Upload Image"), gr.inputs.Video(type="file", label="Upload Video")],
|
42 |
+
outputs=[gr.outputs.Image(type="pil", label="Detected Image"), gr.outputs.Video(label="Detected Video")],
|
43 |
title="WALDO30 YOLOv8 Object Detection",
|
44 |
+
description="Upload an image or video to see object detection results using the WALDO30 YOLOv8 model."
|
45 |
)
|
46 |
|
|
|
47 |
if __name__ == "__main__":
|
48 |
app.launch()
|