from flask import Flask, render_template, request, jsonify, send_from_directory, url_for from flask_cors import CORS import cv2 import torch import numpy as np import os from werkzeug.utils import secure_filename import sys import traceback from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image # Add bodybuilding_pose_analyzer to path sys.path.append('.') # Assuming app.py is at the root of cv.github.io from bodybuilding_pose_analyzer.src.movenet_analyzer import MoveNetAnalyzer from bodybuilding_pose_analyzer.src.pose_analyzer import PoseAnalyzer app = Flask(__name__, static_url_path='/static', static_folder='static') CORS(app, resources={r"/*": {"origins": "*"}}) app.config['UPLOAD_FOLDER'] = 'static/uploads' app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size try: os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) except PermissionError: pass # Ignore if we can't create it (e.g., on HF Spaces) # Load CNN model for bodybuilding pose classification cnn_model_path = 'external/BodybuildingPoseClassifier/bodybuilding_pose_classifier.h5' cnn_model = load_model(cnn_model_path) cnn_class_labels = ['Side Chest', 'Front Double Biceps', 'Back Double Biceps', 'Front Lat Spread', 'Back Lat Spread'] def predict_pose_cnn(img_path): img = image.load_img(img_path, target_size=(150, 150)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) / 255.0 predictions = cnn_model.predict(img_array) predicted_class = np.argmax(predictions, axis=1) confidence = float(np.max(predictions)) return cnn_class_labels[predicted_class[0]], confidence @app.route('/static/uploads/') def serve_video(filename): response = send_from_directory(app.config['UPLOAD_FOLDER'], filename, as_attachment=False) # Ensure correct content type, especially for Safari/iOS if issues arise if filename.lower().endswith('.mp4'): response.headers['Content-Type'] = 'video/mp4' return response @app.after_request def after_request(response): response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization,X-Requested-With,Accept') response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS') return response def process_video_movenet(video_path, model_variant='lightning', pose_type='front_double_biceps'): try: print(f"[PROCESS_VIDEO_MOVENET] Called with video_path: {video_path}, model_variant: {model_variant}, pose_type: {pose_type}") if not os.path.exists(video_path): raise FileNotFoundError(f"Video file not found: {video_path}") analyzer = MoveNetAnalyzer(model_name=model_variant) cap = cv2.VideoCapture(video_path) if not cap.isOpened(): raise ValueError(f"Failed to open video file: {video_path}") fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) print(f"Processing video with MoveNet ({model_variant}): {width}x{height} @ {fps}fps") output_filename = f'output_movenet_{model_variant}.mp4' output_path = os.path.join(app.config['UPLOAD_FOLDER'], output_filename) fourcc = cv2.VideoWriter_fourcc(*'avc1') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) frame_count = 0 current_pose = pose_type # Initialized (e.g., to 'front_double_biceps') segment_length = 4 * fps if fps > 0 else 120 # 4 seconds worth of frames cnn_pose = None last_valid_landmarks = None while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_count += 1 # Detect pose and get landmarks, reusing last valid landmarks if needed frame_with_pose, landmarks_analysis, landmarks = analyzer.process_frame(frame, current_pose, last_valid_landmarks=last_valid_landmarks) if landmarks: last_valid_landmarks = landmarks # Every 4 seconds, classify the pose (rule-based and CNN) if (frame_count - 1) % segment_length == 0: if landmarks: detected_pose = analyzer.classify_pose(landmarks) print(f"[AUTO-POSE] Frame {frame_count}: Detected pose: {detected_pose}") current_pose = detected_pose else: print(f"[AUTO-POSE] Frame {frame_count}: No landmarks detected, keeping previous pose: {current_pose}") # CNN prediction (every 4 seconds) temp_img_path = f'temp_frame_for_cnn_{frame_count}.jpg' cv2.imwrite(temp_img_path, frame) try: cnn_pose_pred, cnn_conf = predict_pose_cnn(temp_img_path) print(f"[CNN] Frame {frame_count}: Pose: {cnn_pose_pred}, Conf: {cnn_conf:.2f}") if cnn_conf >= 0.3: current_pose = cnn_pose_pred # <--- HERE current_pose is updated except Exception as e: print(f"[CNN] Error predicting pose: {e}") cnn_pose_pred, cnn_conf = None, 0.0 if os.path.exists(temp_img_path): os.remove(temp_img_path) # Determine best pose if cnn_conf >= 0.3: best_pose = cnn_pose_pred elif landmarks: best_pose = analyzer.classify_pose(landmarks) else: best_pose = 'Uncertain' # Analyze using the current pose analysis = analyzer.analyze_pose(landmarks, current_pose) if landmarks else {'error': 'No pose detected'} # Overlay results y_offset = 90 if 'error' not in analysis: display_model_name = f"Gladiator {model_variant.capitalize()}" cv2.putText(frame_with_pose, f"Model: {display_model_name}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2) cv2.putText(frame_with_pose, f"Gladiator Pose: {best_pose}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2) for joint, angle in analysis.get('angles', {}).items(): text_to_display = f"{joint.capitalize()}: {angle:.1f} deg" cv2.putText(frame_with_pose, text_to_display, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) y_offset += 25 for correction in analysis.get('corrections', []): cv2.putText(frame_with_pose, correction, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2) y_offset += 25 else: cv2.putText(frame_with_pose, analysis['error'], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) out.write(frame_with_pose) cap.release() out.release() if frame_count == 0: raise ValueError("No frames were processed from the video by MoveNet") print(f"MoveNet video processing completed. Processed {frame_count} frames. Output: {output_path}") return url_for('serve_video', filename=output_filename, _external=False) except Exception as e: print(f'Error in process_video_movenet: {e}') traceback.print_exc() raise def process_video_mediapipe(video_path): try: print(f"[PROCESS_VIDEO_MEDIAPIPE] Called with video_path: {video_path}") if not os.path.exists(video_path): raise FileNotFoundError(f"Video file not found: {video_path}") analyzer = PoseAnalyzer() cap = cv2.VideoCapture(video_path) if not cap.isOpened(): raise ValueError(f"Failed to open video file: {video_path}") fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) print(f"Processing video with MediaPipe: {width}x{height} @ {fps}fps") output_filename = f'output_mediapipe.mp4' output_path = os.path.join(app.config['UPLOAD_FOLDER'], output_filename) fourcc = cv2.VideoWriter_fourcc(*'avc1') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) frame_count = 0 cnn_pose = None segment_length = 4 * fps if fps > 0 else 120 # 4 seconds worth of frames last_valid_landmarks = None while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_count += 1 # Detect pose and analyze, reusing last valid landmarks if needed frame_with_pose, analysis, landmarks = analyzer.process_frame(frame, last_valid_landmarks=last_valid_landmarks) if landmarks: last_valid_landmarks = landmarks # Every 4 seconds, classify the pose using CNN if (frame_count - 1) % segment_length == 0: temp_img_path = 'temp_frame_for_cnn.jpg' cv2.imwrite(temp_img_path, frame) try: cnn_pose, cnn_conf = predict_pose_cnn(temp_img_path) print(f"[CNN] Confidence: {cnn_conf:.3f} for pose: {cnn_pose}") except Exception as e: print(f"[CNN] Error predicting pose: {e}") cnn_pose, cnn_conf = None, 0.0 if os.path.exists(temp_img_path): os.remove(temp_img_path) # Determine best pose if cnn_conf >= 0.3: best_pose = cnn_pose else: best_pose = 'Uncertain' # Overlay results y_offset = 30 cv2.putText(frame_with_pose, f"Model: Gladiator SupaDot", (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2) y_offset += 30 cv2.putText(frame_with_pose, f"Gladiator Pose: {best_pose}", (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2) y_offset += 30 if 'error' not in analysis: for joint, angle in analysis.get('angles', {}).items(): text_to_display = f"{joint.capitalize()}: {angle:.1f} deg" cv2.putText(frame_with_pose, text_to_display, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) y_offset += 25 for correction in analysis.get('corrections', []): cv2.putText(frame_with_pose, correction, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2) y_offset += 25 else: cv2.putText(frame_with_pose, analysis['error'], (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) out.write(frame_with_pose) cap.release() out.release() if frame_count == 0: raise ValueError("No frames were processed from the video by MediaPipe") print(f"MediaPipe video processing completed. Processed {frame_count} frames. Output: {output_path}") return url_for('serve_video', filename=output_filename, _external=False) except Exception as e: print(f'Error in process_video_mediapipe: {e}') traceback.print_exc() raise @app.route('/') def index(): return render_template('index.html') @app.route('/upload', methods=['POST']) def upload_file(): try: if 'video' not in request.files: return jsonify({'error': 'No video file provided'}), 400 file = request.files['video'] if file.filename == '': return jsonify({'error': 'No selected file'}), 400 if file: allowed_extensions = {'mp4', 'avi', 'mov', 'mkv'} if '.' not in file.filename or file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions: return jsonify({'error': 'Invalid file format. Allowed formats: mp4, avi, mov, mkv'}), 400 filename = secure_filename(file.filename) filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(filepath) print(f"File saved to: {filepath}") try: model_choice = request.form.get('model_choice', 'Gladiator SupaDot') if model_choice == 'movenet': movenet_variant = request.form.get('movenet_variant', 'lightning') output_path_url = process_video_movenet(filepath, model_variant=movenet_variant) else: output_path_url = process_video_mediapipe(filepath) print(f"[DEBUG] Generated video URL for client: {output_path_url}") return jsonify({ 'message': f'Video processed successfully with {model_choice}', 'output_path': output_path_url }) except Exception as e: print(f"Error processing video: {e}") traceback.print_exc() return jsonify({'error': f'Error processing video: {str(e)}'}), 500 finally: if os.path.exists(filepath): os.remove(filepath) except Exception as e: print(f"Error in upload_file: {e}") traceback.print_exc() return jsonify({'error': 'Internal server error'}), 500 if __name__ == "__main__": app.run(host="0.0.0.0", port=7860, debug=True)