{ "cells": [ { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "# File renaming for consistency\n", "import os\n", "from os import path\n", "\n", "for count, filename in enumerate(os.listdir(\"deadlift2\")):\n", " src = \"deadlift2/\" + filename\n", " string = \"deadlift2/deadlift_\" + str(count) + \".jpg\"\n", " os.rename(src, string)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-to-classify-photos-of-dogs-and-cats/" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(549,) ()\n" ] } ], "source": [ "from os import listdir\n", "from numpy import asarray\n", "from numpy import save\n", "from keras.preprocessing.image import load_img\n", "from keras.preprocessing.image import img_to_array\n", "\n", "folder = \"train/\"\n", "photos, labels = list(), list()\n", "\n", "for file in listdir(folder):\n", " output = 0.0\n", " if file.startswith(\"squat\"):\n", " output = 1.0\n", " if file.startswith(\"deadlift\"):\n", " output = 2.0\n", " photo = load_img(folder + file, target_size=(150,150))\n", " photo = img_to_array\n", " \n", " photos.append(photo)\n", " labels.append(output)\n", "photos = asarray(photos)\n", "labels = asarray(output)\n", "print(photos.shape, labels.shape)\n", "\n", "save(\"exercise_photos.npy\", photos)\n", "save(\"exercise_labels.npy\", photos)" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(549,) (549,)\n" ] } ], "source": [ "from numpy import load\n", "photos = load(\"exercise_photos.npy\",allow_pickle=True)\n", "labels = load(\"exercise_labels.npy\",allow_pickle=True)\n", "\n", "print(photos.shape, labels.shape)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "# Directory Generation\n", "from os import makedirs\n", "dataset_home = \"dataset/\"\n", "subdirs = [\"train/\", \"test/\"]\n", "for subdir in subdirs:\n", " # create label subdirectories\n", " labeldirs = [\"bench/\", \"squat/\", \"deadlift/\"]\n", " for labldir in labeldirs:\n", " newdir = dataset_home + subdir + labldir\n", " makedirs(newdir)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "# Segment into testing and training images\n", "import random\n", "from shutil import copyfile\n", "random.seed(1)\n", "ratio = 0.2\n", "dataset_home = \"dataset/\"\n", "src_directory = \"images/\"\n", "for file in listdir(src_directory):\n", " src = src_directory + '/' + file\n", " dst_dir = \"train/\"\n", " if random.random() < ratio:\n", " dst_dir = \"test/\"\n", " if file.startswith(\"bench\"):\n", " dst = dataset_home + dst_dir + \"bench/\" + file\n", " elif file.startswith(\"squat\"):\n", " dst = dataset_home + dst_dir + \"squat/\" + file\n", " else:\n", " dst = dataset_home + dst_dir + \"deadlift/\" + file\n", " copyfile(src, dst) " ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 448 images belonging to 3 classes.\n", "Found 101 images belonging to 3 classes.\n" ] }, { "ename": "ValueError", "evalue": "in user code:\n\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:806 train_function *\n return step_function(self, iterator)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:796 step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:1211 run\n return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2585 call_for_each_replica\n return self._call_for_each_replica(fn, args, kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2945 _call_for_each_replica\n return fn(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:789 run_step **\n outputs = model.train_step(data)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:748 train_step\n loss = self.compiled_loss(\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\compile_utils.py:204 __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:149 __call__\n losses = ag_call(y_true, y_pred)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:253 call **\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:1535 categorical_crossentropy\n return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\backend.py:4687 categorical_crossentropy\n target.shape.assert_is_compatible_with(output.shape)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\tensor_shape.py:1134 assert_is_compatible_with\n raise ValueError(\"Shapes %s and %s are incompatible\" % (self, other))\n\n ValueError: Shapes (None, 1) and (None, 10) are incompatible\n", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 99\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 100\u001b[0m \u001b[1;31m# entry point, run the test harness\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 101\u001b[1;33m \u001b[0mrun_test_harness\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32m\u001b[0m in \u001b[0;36mrun_test_harness\u001b[1;34m()\u001b[0m\n\u001b[0;32m 90\u001b[0m class_mode='binary', batch_size=64, target_size=(150, 150))\n\u001b[0;32m 91\u001b[0m \u001b[1;31m# fit model\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 92\u001b[1;33m history = model.fit(train_it, steps_per_epoch=len(train_it),\n\u001b[0m\u001b[0;32m 93\u001b[0m validation_data=test_it, validation_steps=len(test_it), epochs=20, verbose=0)\n\u001b[0;32m 94\u001b[0m \u001b[1;31m# evaluate model\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_method_wrapper\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 106\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_method_wrapper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 107\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_in_multi_worker_mode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# pylint: disable=protected-access\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 108\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 109\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 110\u001b[0m \u001b[1;31m# Running inside `run_distribute_coordinator` already.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1096\u001b[0m batch_size=batch_size):\n\u001b[0;32m 1097\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1098\u001b[1;33m \u001b[0mtmp_logs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtrain_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1099\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1100\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 778\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 779\u001b[0m \u001b[0mcompiler\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"nonXla\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 780\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 781\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 782\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_tracing_count\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m_call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 821\u001b[0m \u001b[1;31m# This is the first call of __call__, so we have to initialize.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 822\u001b[0m \u001b[0minitializers\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 823\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_initialize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0madd_initializers_to\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0minitializers\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 824\u001b[0m \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 825\u001b[0m \u001b[1;31m# At this point we know that the initialization is complete (or less\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m_initialize\u001b[1;34m(self, args, kwds, add_initializers_to)\u001b[0m\n\u001b[0;32m 694\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_graph_deleter\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mFunctionDeleter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_lifted_initializer_graph\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 695\u001b[0m self._concrete_stateful_fn = (\n\u001b[1;32m--> 696\u001b[1;33m self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access\n\u001b[0m\u001b[0;32m 697\u001b[0m *args, **kwds))\n\u001b[0;32m 698\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_get_concrete_function_internal_garbage_collected\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2853\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2854\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_lock\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2855\u001b[1;33m \u001b[0mgraph_function\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_maybe_define_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2856\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2857\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_maybe_define_function\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m 3211\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3212\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_function_cache\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmissed\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcall_context_key\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3213\u001b[1;33m \u001b[0mgraph_function\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_create_graph_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3214\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_function_cache\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mprimary\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mcache_key\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3215\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_create_graph_function\u001b[1;34m(self, args, kwargs, override_flat_arg_shapes)\u001b[0m\n\u001b[0;32m 3063\u001b[0m \u001b[0marg_names\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbase_arg_names\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mmissing_arg_names\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3064\u001b[0m graph_function = ConcreteFunction(\n\u001b[1;32m-> 3065\u001b[1;33m func_graph_module.func_graph_from_py_func(\n\u001b[0m\u001b[0;32m 3066\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3067\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_python_function\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py\u001b[0m in \u001b[0;36mfunc_graph_from_py_func\u001b[1;34m(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)\u001b[0m\n\u001b[0;32m 984\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moriginal_func\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtf_decorator\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munwrap\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpython_func\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 985\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 986\u001b[1;33m \u001b[0mfunc_outputs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpython_func\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mfunc_args\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mfunc_kwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 987\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 988\u001b[0m \u001b[1;31m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36mwrapped_fn\u001b[1;34m(*args, **kwds)\u001b[0m\n\u001b[0;32m 598\u001b[0m \u001b[1;31m# __wrapped__ allows AutoGraph to swap in a converted function. We give\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 599\u001b[0m \u001b[1;31m# the function a weak reference to itself to avoid a reference cycle.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 600\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mweak_wrapped_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__wrapped__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 601\u001b[0m \u001b[0mweak_wrapped_fn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mweakref\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mref\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mwrapped_fn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 602\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mc:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py\u001b[0m in \u001b[0;36mwrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 971\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;31m# pylint:disable=broad-except\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 972\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"ag_error_metadata\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 973\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mag_error_metadata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mto_exception\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 974\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 975\u001b[0m \u001b[1;32mraise\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mValueError\u001b[0m: in user code:\n\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:806 train_function *\n return step_function(self, iterator)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:796 step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:1211 run\n return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2585 call_for_each_replica\n return self._call_for_each_replica(fn, args, kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\distribute\\distribute_lib.py:2945 _call_for_each_replica\n return fn(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:789 run_step **\n outputs = model.train_step(data)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\training.py:748 train_step\n loss = self.compiled_loss(\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\engine\\compile_utils.py:204 __call__\n loss_value = loss_obj(y_t, y_p, sample_weight=sw)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:149 __call__\n losses = ag_call(y_true, y_pred)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:253 call **\n return ag_fn(y_true, y_pred, **self._fn_kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\losses.py:1535 categorical_crossentropy\n return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py:201 wrapper\n return target(*args, **kwargs)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\keras\\backend.py:4687 categorical_crossentropy\n target.shape.assert_is_compatible_with(output.shape)\n c:\\python38-64\\lib\\site-packages\\tensorflow\\python\\framework\\tensor_shape.py:1134 assert_is_compatible_with\n raise ValueError(\"Shapes %s and %s are incompatible\" % (self, other))\n\n ValueError: Shapes (None, 1) and (None, 10) are incompatible\n" ] } ], "source": [ "# Baseline CNN Model\n", "import sys\n", "from matplotlib import pyplot\n", "import keras\n", "from keras.utils import to_categorical\n", "from keras.models import Sequential\n", "from keras.layers import Conv2D\n", "from keras.layers import MaxPooling2D\n", "from keras.layers import Dense\n", "from keras.layers import Flatten\n", "from keras.layers import Dropout\n", "from keras.optimizers import SGD\n", "from keras.preprocessing.image import ImageDataGenerator\n", " \n", "# one block VGG\n", "\"\"\"\n", "def define_model():\n", " model = Sequential()\n", " model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=(150, 150, 3)))\n", " model.add(MaxPooling2D((2, 2)))\n", " model.add(Flatten())\n", " model.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))\n", " model.add(Dense(1, activation='sigmoid'))\n", " # compile model\n", " opt = SGD(lr=0.001, momentum=0.9)\n", " model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])\n", " return model\n", "\"\"\"\n", "\"\"\"\n", "# two block VGG\n", "def define_model():\n", " model = Sequential()\n", " model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=(150, 150, 3)))\n", " model.add(MaxPooling2D((2, 2)))\n", " model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same'))\n", " model.add(MaxPooling2D((2, 2)))\n", " model.add(Flatten())\n", " model.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))\n", " model.add(Dense(1, activation='sigmoid'))\n", " # compile model\n", " opt = SGD(lr=0.001, momentum=0.9)\n", " model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])\n", " return model\n", "\"\"\"\n", "# three block VGG\n", "def define_model():\n", "\n", " cnn1 = Sequential()\n", " cnn1.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))\n", " cnn1.add(MaxPooling2D((2, 2)))\n", " cnn1.add(Dropout(0.2))\n", "\n", " cnn1.add(Flatten())\n", "\n", " cnn1.add(Dense(128, activation='relu'))\n", " cnn1.add(Dense(10, activation='softmax'))\n", "\n", " cnn1.compile(loss=keras.losses.categorical_crossentropy,\n", " optimizer=keras.optimizers.Adam(),\n", " metrics=['accuracy'])\n", " return cnn1\n", "\n", "# plot diagnostic learning curves\n", "def summarize_diagnostics(history):\n", " # plot loss\n", " pyplot.subplot(211)\n", " pyplot.title('Cross Entropy Loss')\n", " pyplot.plot(history.history['loss'], color='blue', label='train')\n", " pyplot.plot(history.history['val_loss'], color='orange', label='test')\n", " # plot accuracy\n", " pyplot.subplot(212)\n", " pyplot.title('Classification Accuracy')\n", " pyplot.plot(history.history['accuracy'], color='blue', label='train')\n", " pyplot.plot(history.history['val_accuracy'], color='orange', label='test')\n", " # save plot to file\n", " filename = sys.argv[0].split('/')[-1]\n", " pyplot.savefig(filename + '_plot.png')\n", " pyplot.close()\n", " \n", "# run the test harness for evaluating a model\n", "def run_test_harness():\n", " # define model\n", " model = define_model()\n", " # create data generator\n", " datagen = ImageDataGenerator(rescale=1.0/255.0)\n", " # prepare iterators\n", " train_it = datagen.flow_from_directory('dataset/train/',\n", " class_mode='binary', batch_size=64, target_size=(150, 150))\n", " test_it = datagen.flow_from_directory('dataset/test/',\n", " class_mode='binary', batch_size=64, target_size=(150, 150))\n", " # fit model\n", " history = model.fit(train_it, steps_per_epoch=len(train_it),\n", " validation_data=test_it, validation_steps=len(test_it), epochs=20, verbose=0)\n", " # evaluate model\n", " _, acc = model.evaluate_generator(test_it, steps=len(test_it), verbose=0)\n", " print('> %.3f' % (acc * 100.0))\n", " # learning curves\n", " summarize_diagnostics(history)\n", " \n", "# entry point, run the test harness\n", "run_test_harness()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }