Spaces:
Sleeping
Sleeping
Sean Carnahan
commited on
Commit
·
cd361a4
1
Parent(s):
fbef789
Update for HF Spaces deployment: Add memory management, error handling, and logging
Browse files- .gitignore +43 -0
- Dockerfile +14 -20
- README.md +49 -0
- app.py +82 -154
- requirements.txt +1 -0
.gitignore
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
env/
|
| 8 |
+
build/
|
| 9 |
+
develop-eggs/
|
| 10 |
+
dist/
|
| 11 |
+
downloads/
|
| 12 |
+
eggs/
|
| 13 |
+
.eggs/
|
| 14 |
+
lib/
|
| 15 |
+
lib64/
|
| 16 |
+
parts/
|
| 17 |
+
sdist/
|
| 18 |
+
var/
|
| 19 |
+
wheels/
|
| 20 |
+
*.egg-info/
|
| 21 |
+
.installed.cfg
|
| 22 |
+
*.egg
|
| 23 |
+
|
| 24 |
+
# Virtual Environment
|
| 25 |
+
venv/
|
| 26 |
+
ENV/
|
| 27 |
+
|
| 28 |
+
# IDE
|
| 29 |
+
.idea/
|
| 30 |
+
.vscode/
|
| 31 |
+
*.swp
|
| 32 |
+
*.swo
|
| 33 |
+
|
| 34 |
+
# Project specific
|
| 35 |
+
static/uploads/
|
| 36 |
+
temp_frame_for_cnn_*.jpg
|
| 37 |
+
*.mp4
|
| 38 |
+
*.avi
|
| 39 |
+
*.mov
|
| 40 |
+
*.mkv
|
| 41 |
+
|
| 42 |
+
# Logs
|
| 43 |
+
*.log
|
Dockerfile
CHANGED
|
@@ -1,35 +1,29 @@
|
|
| 1 |
-
|
| 2 |
-
FROM python:3.9-slim
|
| 3 |
|
| 4 |
-
WORKDIR /
|
| 5 |
|
| 6 |
# Install system dependencies
|
| 7 |
-
RUN apt-get update && apt-get install -y
|
| 8 |
libgl1-mesa-glx \
|
| 9 |
libglib2.0-0 \
|
| 10 |
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
|
|
|
|
| 12 |
COPY requirements.txt .
|
| 13 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
COPY app.py .
|
| 21 |
-
RUN echo "Listing files:" && ls -la # Debug: List files in the build context root
|
| 22 |
-
COPY bodybuilding_pose_analyzer bodybuilding_pose_analyzer
|
| 23 |
-
COPY external external
|
| 24 |
-
# COPY yolov7 yolov7
|
| 25 |
-
# COPY yolov7-w6-pose.pt .
|
| 26 |
-
COPY static static
|
| 27 |
-
COPY templates templates
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
|
|
|
| 31 |
|
|
|
|
| 32 |
EXPOSE 7860
|
| 33 |
|
| 34 |
-
#
|
| 35 |
-
CMD ["
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
|
|
|
| 2 |
|
| 3 |
+
WORKDIR /code
|
| 4 |
|
| 5 |
# Install system dependencies
|
| 6 |
+
RUN apt-get update && apt-get install -y \
|
| 7 |
libgl1-mesa-glx \
|
| 8 |
libglib2.0-0 \
|
| 9 |
&& rm -rf /var/lib/apt/lists/*
|
| 10 |
|
| 11 |
+
# Copy requirements first to leverage Docker cache
|
| 12 |
COPY requirements.txt .
|
| 13 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 14 |
|
| 15 |
+
# Copy the rest of the application
|
| 16 |
+
COPY . .
|
| 17 |
|
| 18 |
+
# Create necessary directories
|
| 19 |
+
RUN mkdir -p static/uploads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# Set environment variables
|
| 22 |
+
ENV PYTHONUNBUFFERED=1
|
| 23 |
+
ENV FLASK_APP=app.py
|
| 24 |
|
| 25 |
+
# Expose the port
|
| 26 |
EXPOSE 7860
|
| 27 |
|
| 28 |
+
# Run the application
|
| 29 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
|
@@ -71,6 +71,55 @@ This Space uses a Flask backend with various machine learning models for pose es
|
|
| 71 |
* The feedback provided is based on predefined angle ranges and may not cover all nuances of perfect form.
|
| 72 |
* Processing time can be significant for longer videos or when using more computationally intensive models.
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
---
|
| 75 |
|
| 76 |
*Remember to replace placeholder links and add any other specific information relevant to your project!*
|
|
|
|
| 71 |
* The feedback provided is based on predefined angle ranges and may not cover all nuances of perfect form.
|
| 72 |
* Processing time can be significant for longer videos or when using more computationally intensive models.
|
| 73 |
|
| 74 |
+
## Setup
|
| 75 |
+
|
| 76 |
+
1. Install dependencies:
|
| 77 |
+
```bash
|
| 78 |
+
pip install -r requirements.txt
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
2. Ensure the model files are in place:
|
| 82 |
+
- CNN model: `external/BodybuildingPoseClassifier/bodybuilding_pose_classifier.h5`
|
| 83 |
+
|
| 84 |
+
3. Run the application:
|
| 85 |
+
```bash
|
| 86 |
+
python app.py
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
The application will be available at `http://localhost:7860`
|
| 90 |
+
|
| 91 |
+
## Usage
|
| 92 |
+
|
| 93 |
+
1. Open the web interface
|
| 94 |
+
2. Select a video file (supported formats: mp4, avi, mov, mkv)
|
| 95 |
+
3. Choose the model (Gladiator SupaDot or MoveNet)
|
| 96 |
+
4. Upload and wait for processing
|
| 97 |
+
5. View the results with pose detection, angles, and corrections
|
| 98 |
+
|
| 99 |
+
## Models
|
| 100 |
+
|
| 101 |
+
- **Gladiator SupaDot**: Custom pose analyzer with detailed angle measurements and form corrections
|
| 102 |
+
- **MoveNet**: Google's pose detection model for basic pose tracking
|
| 103 |
+
|
| 104 |
+
## Dependencies
|
| 105 |
+
|
| 106 |
+
- Flask
|
| 107 |
+
- OpenCV
|
| 108 |
+
- TensorFlow
|
| 109 |
+
- MediaPipe
|
| 110 |
+
- NumPy
|
| 111 |
+
- Other dependencies listed in requirements.txt
|
| 112 |
+
|
| 113 |
+
## Notes
|
| 114 |
+
|
| 115 |
+
- Maximum video file size: 100MB
|
| 116 |
+
- Processing time depends on video length and available hardware
|
| 117 |
+
- GPU acceleration is automatically enabled if available
|
| 118 |
+
|
| 119 |
+
## License
|
| 120 |
+
|
| 121 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
| 122 |
+
|
| 123 |
---
|
| 124 |
|
| 125 |
*Remember to replace placeholder links and add any other specific information relevant to your project!*
|
app.py
CHANGED
|
@@ -12,6 +12,9 @@ from tensorflow.keras.models import load_model
|
|
| 12 |
from tensorflow.keras.preprocessing import image
|
| 13 |
import time
|
| 14 |
import tensorflow_hub as hub
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Check GPU availability
|
| 17 |
print("[GPU] Checking GPU availability...")
|
|
@@ -32,13 +35,20 @@ sys.path.append('.') # Assuming app.py is at the root of cv.github.io
|
|
| 32 |
from bodybuilding_pose_analyzer.src.movenet_analyzer import MoveNetAnalyzer
|
| 33 |
from bodybuilding_pose_analyzer.src.pose_analyzer import PoseAnalyzer
|
| 34 |
|
| 35 |
-
#
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def wrap_text(text: str, font_face: int, font_scale: float, thickness: int, max_width: int) -> list[str]:
|
| 44 |
"""Wrap text to fit within max_width."""
|
|
@@ -83,25 +93,6 @@ app.config['MAX_CONTENT_LENGTH'] = 100 * 1024 * 1024 # 100MB max file size
|
|
| 83 |
# Ensure upload directory exists
|
| 84 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
| 85 |
|
| 86 |
-
# Initialize YOLOv7 model
|
| 87 |
-
# device = select_device('')
|
| 88 |
-
# yolo_model = None # Initialize as None
|
| 89 |
-
# stride = None
|
| 90 |
-
# imgsz = None
|
| 91 |
-
|
| 92 |
-
# try:
|
| 93 |
-
# yolo_model = attempt_load('yolov7-w6-pose.pt', map_location=device)
|
| 94 |
-
# stride = int(yolo_model.stride.max())
|
| 95 |
-
# imgsz = check_img_size(640, s=stride)
|
| 96 |
-
# print("YOLOv7 Model loaded successfully")
|
| 97 |
-
# except Exception as e:
|
| 98 |
-
# print(f"Error loading YOLOv7 model: {e}")
|
| 99 |
-
# traceback.print_exc()
|
| 100 |
-
# Not raising here to allow app to run if only MoveNet is used. Error will be caught if YOLOv7 is selected.
|
| 101 |
-
|
| 102 |
-
# YOLOv7 pose model expects 17 keypoints
|
| 103 |
-
# kpt_shape = (17, 3)
|
| 104 |
-
|
| 105 |
# Load CNN model for bodybuilding pose classification
|
| 106 |
cnn_model_path = 'external/BodybuildingPoseClassifier/bodybuilding_pose_classifier.h5'
|
| 107 |
cnn_model = load_model(cnn_model_path)
|
|
@@ -109,31 +100,34 @@ cnn_class_labels = ['side_chest', 'front_double_biceps', 'back_double_biceps', '
|
|
| 109 |
|
| 110 |
def predict_pose_cnn(img_path):
|
| 111 |
try:
|
|
|
|
| 112 |
if gpus:
|
| 113 |
-
|
| 114 |
with tf.device('/GPU:0'):
|
| 115 |
img = image.load_img(img_path, target_size=(150, 150))
|
| 116 |
img_array = image.img_to_array(img)
|
| 117 |
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
| 118 |
-
predictions = cnn_model.predict(img_array)
|
| 119 |
predicted_class = np.argmax(predictions, axis=1)
|
| 120 |
confidence = float(np.max(predictions))
|
| 121 |
else:
|
| 122 |
-
|
| 123 |
with tf.device('/CPU:0'):
|
| 124 |
img = image.load_img(img_path, target_size=(150, 150))
|
| 125 |
img_array = image.img_to_array(img)
|
| 126 |
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
| 127 |
-
predictions = cnn_model.predict(img_array)
|
| 128 |
predicted_class = np.argmax(predictions, axis=1)
|
| 129 |
confidence = float(np.max(predictions))
|
| 130 |
|
| 131 |
-
|
| 132 |
return cnn_class_labels[predicted_class[0]], confidence
|
| 133 |
except Exception as e:
|
| 134 |
-
|
| 135 |
traceback.print_exc()
|
| 136 |
raise
|
|
|
|
|
|
|
| 137 |
|
| 138 |
@app.route('/static/uploads/<path:filename>')
|
| 139 |
def serve_video(filename):
|
|
@@ -150,88 +144,6 @@ def after_request(response):
|
|
| 150 |
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
|
| 151 |
return response
|
| 152 |
|
| 153 |
-
# def process_video_yolov7(video_path): # Renamed from process_video
|
| 154 |
-
# global yolo_model, imgsz, stride # Ensure global model is used
|
| 155 |
-
# if yolo_model is None:
|
| 156 |
-
# raise RuntimeError("YOLOv7 model failed to load. Cannot process video.")
|
| 157 |
-
# try:
|
| 158 |
-
# if not os.path.exists(video_path):
|
| 159 |
-
# raise FileNotFoundError(f"Video file not found: {video_path}")
|
| 160 |
-
#
|
| 161 |
-
# cap = cv2.VideoCapture(video_path)
|
| 162 |
-
# if not cap.isOpened():
|
| 163 |
-
# raise ValueError(f"Failed to open video file: {video_path}")
|
| 164 |
-
#
|
| 165 |
-
# fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 166 |
-
# width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 167 |
-
# height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 168 |
-
#
|
| 169 |
-
# print(f"Processing video: {width}x{height} @ {fps}fps")
|
| 170 |
-
#
|
| 171 |
-
# # Create output video writer
|
| 172 |
-
# output_path = os.path.join(app.config['UPLOAD_FOLDER'], 'output.mp4')
|
| 173 |
-
# fourcc = cv2.VideoWriter_fourcc(*'avc1')
|
| 174 |
-
# out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 175 |
-
#
|
| 176 |
-
# frame_count = 0
|
| 177 |
-
# while cap.isOpened():
|
| 178 |
-
# ret, frame = cap.read()
|
| 179 |
-
# if not ret:
|
| 180 |
-
# break
|
| 181 |
-
#
|
| 182 |
-
# frame_count += 1
|
| 183 |
-
# print(f"Processing frame {frame_count}")
|
| 184 |
-
#
|
| 185 |
-
# # Prepare image
|
| 186 |
-
# img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 187 |
-
# img = cv2.resize(img, (imgsz, imgsz))
|
| 188 |
-
# img = img.transpose((2, 0, 1)) # HWC to CHW
|
| 189 |
-
# img = np.ascontiguousarray(img)
|
| 190 |
-
# img = torch.from_numpy(img).to(device)
|
| 191 |
-
# img = img.float() / 255.0
|
| 192 |
-
# if img.ndimension() == 3:
|
| 193 |
-
# img = img.unsqueeze(0)
|
| 194 |
-
#
|
| 195 |
-
# # Inference
|
| 196 |
-
# with torch.no_grad():
|
| 197 |
-
# pred = yolo_model(img)[0] # Use yolo_model
|
| 198 |
-
# pred = non_max_suppression_kpt(pred, conf_thres=0.25, iou_thres=0.45, nc=yolo_model.yaml['nc'], kpt_label=True)
|
| 199 |
-
#
|
| 200 |
-
# # Draw results
|
| 201 |
-
# output_frame = frame.copy()
|
| 202 |
-
# poses_detected = False
|
| 203 |
-
# for det in pred:
|
| 204 |
-
# if len(det):
|
| 205 |
-
# poses_detected = True
|
| 206 |
-
# det[:, :4] = scale_coords(img.shape[2:], det[:, :4], frame.shape).round()
|
| 207 |
-
# for row in det:
|
| 208 |
-
# xyxy = row[:4]
|
| 209 |
-
# conf = row[4]
|
| 210 |
-
# cls = row[5]
|
| 211 |
-
# kpts = row[6:]
|
| 212 |
-
# kpts = torch.tensor(kpts).view(kpt_shape)
|
| 213 |
-
# output_frame = plot_skeleton_kpts(output_frame, kpts, steps=3, orig_shape=output_frame.shape[:2])
|
| 214 |
-
#
|
| 215 |
-
# if not poses_detected:
|
| 216 |
-
# print(f"No poses detected in frame {frame_count}")
|
| 217 |
-
#
|
| 218 |
-
# out.write(output_frame)
|
| 219 |
-
#
|
| 220 |
-
# cap.release()
|
| 221 |
-
# out.release()
|
| 222 |
-
#
|
| 223 |
-
# if frame_count == 0:
|
| 224 |
-
# raise ValueError("No frames were processed from the video")
|
| 225 |
-
#
|
| 226 |
-
# print(f"Video processing completed. Processed {frame_count} frames")
|
| 227 |
-
# # Return URL for the client, using the 'serve_video' endpoint
|
| 228 |
-
# output_filename = 'output.mp4'
|
| 229 |
-
# return url_for('serve_video', filename=output_filename, _external=False)
|
| 230 |
-
# except Exception as e:
|
| 231 |
-
# print('Error in process_video:', e)
|
| 232 |
-
# traceback.print_exc()
|
| 233 |
-
# raise
|
| 234 |
-
|
| 235 |
def process_video_movenet(video_path):
|
| 236 |
try:
|
| 237 |
print("[DEBUG] Starting MoveNet video processing")
|
|
@@ -328,7 +240,8 @@ def process_video_movenet(video_path):
|
|
| 328 |
|
| 329 |
def process_video_mediapipe(video_path):
|
| 330 |
try:
|
| 331 |
-
|
|
|
|
| 332 |
if not os.path.exists(video_path):
|
| 333 |
raise FileNotFoundError(f"Video file not found: {video_path}")
|
| 334 |
|
|
@@ -365,7 +278,8 @@ def process_video_mediapipe(video_path):
|
|
| 365 |
break
|
| 366 |
frame_count += 1
|
| 367 |
if frame_count % 30 == 0:
|
| 368 |
-
|
|
|
|
| 369 |
|
| 370 |
# Process frame with MediaPipe
|
| 371 |
processed_frame, current_analysis_results, landmarks = analyzer.process_frame(frame, last_valid_landmarks=last_valid_landmarks)
|
|
@@ -379,14 +293,14 @@ def process_video_mediapipe(video_path):
|
|
| 379 |
cv2.imwrite(temp_img_path, frame)
|
| 380 |
try:
|
| 381 |
cnn_pose_pred, cnn_conf = predict_pose_cnn(temp_img_path)
|
| 382 |
-
|
| 383 |
if cnn_conf >= 0.3:
|
| 384 |
current_pose = cnn_pose_pred # Update current_pose to be displayed
|
| 385 |
except Exception as e:
|
| 386 |
-
|
| 387 |
finally:
|
| 388 |
-
|
| 389 |
-
|
| 390 |
|
| 391 |
# Create side panel
|
| 392 |
panel = np.zeros((height, panel_width, 3), dtype=np.uint8)
|
|
@@ -395,33 +309,29 @@ def process_video_mediapipe(video_path):
|
|
| 395 |
current_font = cv2.FONT_HERSHEY_DUPLEX
|
| 396 |
|
| 397 |
# Base font scale and reference video height for scaling
|
| 398 |
-
# Adjust base_font_scale_at_ref_height if text is generally too large or too small
|
| 399 |
base_font_scale_at_ref_height = 0.6
|
| 400 |
-
reference_height_for_font_scale = 640.0
|
| 401 |
|
| 402 |
# Calculate dynamic font_scale
|
| 403 |
font_scale = (height / reference_height_for_font_scale) * base_font_scale_at_ref_height
|
| 404 |
-
# Clamp font_scale to a min/max range to avoid extremes
|
| 405 |
font_scale = max(0.4, min(font_scale, 1.2))
|
| 406 |
|
| 407 |
# Calculate dynamic thickness
|
| 408 |
thickness = 1 if font_scale < 0.7 else 2
|
| 409 |
|
| 410 |
-
# Calculate dynamic line_height
|
| 411 |
-
# Using a sample string like "Ag" which has ascenders and descenders
|
| 412 |
(_, text_actual_height), _ = cv2.getTextSize("Ag", current_font, font_scale, thickness)
|
| 413 |
-
line_spacing_factor = 1.8
|
| 414 |
line_height = int(text_actual_height * line_spacing_factor)
|
| 415 |
-
line_height = max(line_height, 15)
|
| 416 |
|
| 417 |
-
# Initial y_offset
|
| 418 |
-
y_offset_panel = max(line_height, 20)
|
| 419 |
-
# --- End of Dynamic Text Parameter Calculations ---
|
| 420 |
|
| 421 |
cv2.putText(panel, "Model: Gladiator SupaDot", (10, y_offset_panel), current_font, font_scale, (0, 255, 255), thickness, lineType=cv2.LINE_AA)
|
| 422 |
y_offset_panel += line_height
|
| 423 |
-
if frame_count % 30 == 0:
|
| 424 |
-
|
| 425 |
cv2.putText(panel, f"Pose: {current_pose}", (10, y_offset_panel), current_font, font_scale, (255, 0, 0), thickness, lineType=cv2.LINE_AA)
|
| 426 |
y_offset_panel += int(line_height * 1.5)
|
| 427 |
|
|
@@ -441,10 +351,9 @@ def process_video_mediapipe(video_path):
|
|
| 441 |
cv2.putText(panel, f"• {correction}", (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
|
| 442 |
y_offset_panel += line_height
|
| 443 |
|
| 444 |
-
# Display notes if any
|
| 445 |
if analysis_results.get('notes'):
|
| 446 |
y_offset_panel += line_height
|
| 447 |
-
cv2.putText(panel, "Notes:", (10, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
|
| 448 |
y_offset_panel += line_height
|
| 449 |
for note in analysis_results.get('notes', []):
|
| 450 |
cv2.putText(panel, f"• {note}", (20, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
|
|
@@ -454,19 +363,22 @@ def process_video_mediapipe(video_path):
|
|
| 454 |
y_offset_panel += line_height
|
| 455 |
cv2.putText(panel, analysis_results.get('error', 'Unknown error'), (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
|
| 456 |
|
| 457 |
-
combined_frame = np.hstack((processed_frame, panel))
|
| 458 |
out.write(combined_frame)
|
| 459 |
|
| 460 |
cap.release()
|
| 461 |
out.release()
|
|
|
|
| 462 |
if frame_count == 0:
|
| 463 |
raise ValueError("No frames were processed from the video by MediaPipe")
|
| 464 |
-
|
| 465 |
return url_for('serve_video', filename=output_filename, _external=False)
|
| 466 |
except Exception as e:
|
| 467 |
-
|
| 468 |
traceback.print_exc()
|
| 469 |
raise
|
|
|
|
|
|
|
| 470 |
|
| 471 |
@app.route('/')
|
| 472 |
def index():
|
|
@@ -475,55 +387,56 @@ def index():
|
|
| 475 |
@app.route('/upload', methods=['POST'])
|
| 476 |
def upload_file():
|
| 477 |
try:
|
|
|
|
| 478 |
if 'video' not in request.files:
|
| 479 |
-
|
| 480 |
return jsonify({'error': 'No video file provided'}), 400
|
| 481 |
|
| 482 |
file = request.files['video']
|
| 483 |
if file.filename == '':
|
| 484 |
-
|
| 485 |
return jsonify({'error': 'No selected file'}), 400
|
| 486 |
|
| 487 |
if file:
|
| 488 |
allowed_extensions = {'mp4', 'avi', 'mov', 'mkv'}
|
| 489 |
if '.' not in file.filename or file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions:
|
| 490 |
-
|
| 491 |
return jsonify({'error': 'Invalid file format. Allowed formats: mp4, avi, mov, mkv'}), 400
|
| 492 |
|
| 493 |
# Ensure the filename is properly sanitized
|
| 494 |
filename = secure_filename(file.filename)
|
| 495 |
-
|
| 496 |
-
|
| 497 |
|
| 498 |
# Create a unique filename to prevent conflicts
|
| 499 |
base, ext = os.path.splitext(filename)
|
| 500 |
unique_filename = f"{base}_{int(time.time())}{ext}"
|
| 501 |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename)
|
| 502 |
|
| 503 |
-
|
| 504 |
file.save(filepath)
|
| 505 |
|
| 506 |
if not os.path.exists(filepath):
|
| 507 |
-
|
| 508 |
return jsonify({'error': 'Failed to save uploaded file'}), 500
|
| 509 |
|
| 510 |
-
|
| 511 |
|
| 512 |
try:
|
| 513 |
model_choice = request.form.get('model_choice', 'Gladiator SupaDot')
|
| 514 |
-
|
| 515 |
|
| 516 |
if model_choice == 'movenet':
|
| 517 |
movenet_variant = request.form.get('movenet_variant', 'lightning')
|
| 518 |
-
|
| 519 |
output_path_url = process_video_movenet(filepath)
|
| 520 |
else:
|
| 521 |
output_path_url = process_video_mediapipe(filepath)
|
| 522 |
|
| 523 |
-
|
| 524 |
|
| 525 |
if not os.path.exists(os.path.join(app.config['UPLOAD_FOLDER'], os.path.basename(output_path_url))):
|
| 526 |
-
|
| 527 |
return jsonify({'error': 'Output video file not found'}), 500
|
| 528 |
|
| 529 |
return jsonify({
|
|
@@ -532,22 +445,37 @@ def upload_file():
|
|
| 532 |
})
|
| 533 |
|
| 534 |
except Exception as e:
|
| 535 |
-
|
| 536 |
traceback.print_exc()
|
| 537 |
return jsonify({'error': f'Error processing video: {str(e)}'}), 500
|
| 538 |
|
| 539 |
finally:
|
| 540 |
try:
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
except Exception as e:
|
| 545 |
-
|
| 546 |
|
| 547 |
except Exception as e:
|
| 548 |
-
|
| 549 |
traceback.print_exc()
|
| 550 |
return jsonify({'error': 'Internal server error'}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 551 |
|
| 552 |
if __name__ == '__main__':
|
| 553 |
# Ensure the port is 7860 and debug is False for HF Spaces deployment
|
|
|
|
| 12 |
from tensorflow.keras.preprocessing import image
|
| 13 |
import time
|
| 14 |
import tensorflow_hub as hub
|
| 15 |
+
import gc
|
| 16 |
+
import psutil
|
| 17 |
+
import logging
|
| 18 |
|
| 19 |
# Check GPU availability
|
| 20 |
print("[GPU] Checking GPU availability...")
|
|
|
|
| 35 |
from bodybuilding_pose_analyzer.src.movenet_analyzer import MoveNetAnalyzer
|
| 36 |
from bodybuilding_pose_analyzer.src.pose_analyzer import PoseAnalyzer
|
| 37 |
|
| 38 |
+
# Configure logging
|
| 39 |
+
logging.basicConfig(level=logging.INFO)
|
| 40 |
+
logger = logging.getLogger(__name__)
|
| 41 |
|
| 42 |
+
def log_memory_usage():
|
| 43 |
+
"""Log current memory usage."""
|
| 44 |
+
process = psutil.Process()
|
| 45 |
+
memory_info = process.memory_info()
|
| 46 |
+
logger.info(f"Memory usage: {memory_info.rss / 1024 / 1024:.2f} MB")
|
| 47 |
+
|
| 48 |
+
def cleanup_memory():
|
| 49 |
+
"""Force garbage collection and log memory usage."""
|
| 50 |
+
gc.collect()
|
| 51 |
+
log_memory_usage()
|
| 52 |
|
| 53 |
def wrap_text(text: str, font_face: int, font_scale: float, thickness: int, max_width: int) -> list[str]:
|
| 54 |
"""Wrap text to fit within max_width."""
|
|
|
|
| 93 |
# Ensure upload directory exists
|
| 94 |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
# Load CNN model for bodybuilding pose classification
|
| 97 |
cnn_model_path = 'external/BodybuildingPoseClassifier/bodybuilding_pose_classifier.h5'
|
| 98 |
cnn_model = load_model(cnn_model_path)
|
|
|
|
| 100 |
|
| 101 |
def predict_pose_cnn(img_path):
|
| 102 |
try:
|
| 103 |
+
cleanup_memory() # Clean up before prediction
|
| 104 |
if gpus:
|
| 105 |
+
logger.info("[CNN_DEBUG] Using GPU for CNN prediction")
|
| 106 |
with tf.device('/GPU:0'):
|
| 107 |
img = image.load_img(img_path, target_size=(150, 150))
|
| 108 |
img_array = image.img_to_array(img)
|
| 109 |
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
| 110 |
+
predictions = cnn_model.predict(img_array, verbose=0) # Disable progress bar
|
| 111 |
predicted_class = np.argmax(predictions, axis=1)
|
| 112 |
confidence = float(np.max(predictions))
|
| 113 |
else:
|
| 114 |
+
logger.info("[CNN_DEBUG] No GPU found, using CPU for CNN prediction")
|
| 115 |
with tf.device('/CPU:0'):
|
| 116 |
img = image.load_img(img_path, target_size=(150, 150))
|
| 117 |
img_array = image.img_to_array(img)
|
| 118 |
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
| 119 |
+
predictions = cnn_model.predict(img_array, verbose=0) # Disable progress bar
|
| 120 |
predicted_class = np.argmax(predictions, axis=1)
|
| 121 |
confidence = float(np.max(predictions))
|
| 122 |
|
| 123 |
+
logger.info(f"[CNN_DEBUG] Prediction successful: {cnn_class_labels[predicted_class[0]]}")
|
| 124 |
return cnn_class_labels[predicted_class[0]], confidence
|
| 125 |
except Exception as e:
|
| 126 |
+
logger.error(f"[CNN_ERROR] Exception during CNN prediction: {e}")
|
| 127 |
traceback.print_exc()
|
| 128 |
raise
|
| 129 |
+
finally:
|
| 130 |
+
cleanup_memory() # Clean up after prediction
|
| 131 |
|
| 132 |
@app.route('/static/uploads/<path:filename>')
|
| 133 |
def serve_video(filename):
|
|
|
|
| 144 |
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
|
| 145 |
return response
|
| 146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
def process_video_movenet(video_path):
|
| 148 |
try:
|
| 149 |
print("[DEBUG] Starting MoveNet video processing")
|
|
|
|
| 240 |
|
| 241 |
def process_video_mediapipe(video_path):
|
| 242 |
try:
|
| 243 |
+
cleanup_memory() # Clean up before processing
|
| 244 |
+
logger.info(f"[PROCESS_VIDEO_MEDIAPIPE] Called with video_path: {video_path}")
|
| 245 |
if not os.path.exists(video_path):
|
| 246 |
raise FileNotFoundError(f"Video file not found: {video_path}")
|
| 247 |
|
|
|
|
| 278 |
break
|
| 279 |
frame_count += 1
|
| 280 |
if frame_count % 30 == 0:
|
| 281 |
+
logger.info(f"Processing frame {frame_count}")
|
| 282 |
+
cleanup_memory() # Clean up periodically
|
| 283 |
|
| 284 |
# Process frame with MediaPipe
|
| 285 |
processed_frame, current_analysis_results, landmarks = analyzer.process_frame(frame, last_valid_landmarks=last_valid_landmarks)
|
|
|
|
| 293 |
cv2.imwrite(temp_img_path, frame)
|
| 294 |
try:
|
| 295 |
cnn_pose_pred, cnn_conf = predict_pose_cnn(temp_img_path)
|
| 296 |
+
logger.info(f"[CNN] Frame {frame_count}: Pose: {cnn_pose_pred}, Conf: {cnn_conf:.2f}")
|
| 297 |
if cnn_conf >= 0.3:
|
| 298 |
current_pose = cnn_pose_pred # Update current_pose to be displayed
|
| 299 |
except Exception as e:
|
| 300 |
+
logger.error(f"[CNN] Error predicting pose on frame {frame_count}: {e}")
|
| 301 |
finally:
|
| 302 |
+
if os.path.exists(temp_img_path):
|
| 303 |
+
os.remove(temp_img_path)
|
| 304 |
|
| 305 |
# Create side panel
|
| 306 |
panel = np.zeros((height, panel_width, 3), dtype=np.uint8)
|
|
|
|
| 309 |
current_font = cv2.FONT_HERSHEY_DUPLEX
|
| 310 |
|
| 311 |
# Base font scale and reference video height for scaling
|
|
|
|
| 312 |
base_font_scale_at_ref_height = 0.6
|
| 313 |
+
reference_height_for_font_scale = 640.0
|
| 314 |
|
| 315 |
# Calculate dynamic font_scale
|
| 316 |
font_scale = (height / reference_height_for_font_scale) * base_font_scale_at_ref_height
|
|
|
|
| 317 |
font_scale = max(0.4, min(font_scale, 1.2))
|
| 318 |
|
| 319 |
# Calculate dynamic thickness
|
| 320 |
thickness = 1 if font_scale < 0.7 else 2
|
| 321 |
|
| 322 |
+
# Calculate dynamic line_height
|
|
|
|
| 323 |
(_, text_actual_height), _ = cv2.getTextSize("Ag", current_font, font_scale, thickness)
|
| 324 |
+
line_spacing_factor = 1.8
|
| 325 |
line_height = int(text_actual_height * line_spacing_factor)
|
| 326 |
+
line_height = max(line_height, 15)
|
| 327 |
|
| 328 |
+
# Initial y_offset
|
| 329 |
+
y_offset_panel = max(line_height, 20)
|
|
|
|
| 330 |
|
| 331 |
cv2.putText(panel, "Model: Gladiator SupaDot", (10, y_offset_panel), current_font, font_scale, (0, 255, 255), thickness, lineType=cv2.LINE_AA)
|
| 332 |
y_offset_panel += line_height
|
| 333 |
+
if frame_count % 30 == 0:
|
| 334 |
+
logger.info(f"[MEDIAPIPE_PANEL] Frame {frame_count} - Current Pose for Panel: {current_pose}")
|
| 335 |
cv2.putText(panel, f"Pose: {current_pose}", (10, y_offset_panel), current_font, font_scale, (255, 0, 0), thickness, lineType=cv2.LINE_AA)
|
| 336 |
y_offset_panel += int(line_height * 1.5)
|
| 337 |
|
|
|
|
| 351 |
cv2.putText(panel, f"• {correction}", (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
|
| 352 |
y_offset_panel += line_height
|
| 353 |
|
|
|
|
| 354 |
if analysis_results.get('notes'):
|
| 355 |
y_offset_panel += line_height
|
| 356 |
+
cv2.putText(panel, "Notes:", (10, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
|
| 357 |
y_offset_panel += line_height
|
| 358 |
for note in analysis_results.get('notes', []):
|
| 359 |
cv2.putText(panel, f"• {note}", (20, y_offset_panel), current_font, font_scale, (200, 200, 200), thickness, lineType=cv2.LINE_AA)
|
|
|
|
| 363 |
y_offset_panel += line_height
|
| 364 |
cv2.putText(panel, analysis_results.get('error', 'Unknown error'), (20, y_offset_panel), current_font, font_scale, (0, 0, 255), thickness, lineType=cv2.LINE_AA)
|
| 365 |
|
| 366 |
+
combined_frame = np.hstack((processed_frame, panel))
|
| 367 |
out.write(combined_frame)
|
| 368 |
|
| 369 |
cap.release()
|
| 370 |
out.release()
|
| 371 |
+
cleanup_memory() # Clean up after processing
|
| 372 |
if frame_count == 0:
|
| 373 |
raise ValueError("No frames were processed from the video by MediaPipe")
|
| 374 |
+
logger.info(f"MediaPipe video processing completed. Processed {frame_count} frames. Output: {output_path}")
|
| 375 |
return url_for('serve_video', filename=output_filename, _external=False)
|
| 376 |
except Exception as e:
|
| 377 |
+
logger.error(f'Error in process_video_mediapipe: {e}')
|
| 378 |
traceback.print_exc()
|
| 379 |
raise
|
| 380 |
+
finally:
|
| 381 |
+
cleanup_memory() # Clean up in case of error
|
| 382 |
|
| 383 |
@app.route('/')
|
| 384 |
def index():
|
|
|
|
| 387 |
@app.route('/upload', methods=['POST'])
|
| 388 |
def upload_file():
|
| 389 |
try:
|
| 390 |
+
cleanup_memory() # Clean up before processing
|
| 391 |
if 'video' not in request.files:
|
| 392 |
+
logger.error("[UPLOAD] No video file in request")
|
| 393 |
return jsonify({'error': 'No video file provided'}), 400
|
| 394 |
|
| 395 |
file = request.files['video']
|
| 396 |
if file.filename == '':
|
| 397 |
+
logger.error("[UPLOAD] Empty filename")
|
| 398 |
return jsonify({'error': 'No selected file'}), 400
|
| 399 |
|
| 400 |
if file:
|
| 401 |
allowed_extensions = {'mp4', 'avi', 'mov', 'mkv'}
|
| 402 |
if '.' not in file.filename or file.filename.rsplit('.', 1)[1].lower() not in allowed_extensions:
|
| 403 |
+
logger.error(f"[UPLOAD] Invalid file format: {file.filename}")
|
| 404 |
return jsonify({'error': 'Invalid file format. Allowed formats: mp4, avi, mov, mkv'}), 400
|
| 405 |
|
| 406 |
# Ensure the filename is properly sanitized
|
| 407 |
filename = secure_filename(file.filename)
|
| 408 |
+
logger.info(f"[UPLOAD] Original filename: {file.filename}")
|
| 409 |
+
logger.info(f"[UPLOAD] Sanitized filename: {filename}")
|
| 410 |
|
| 411 |
# Create a unique filename to prevent conflicts
|
| 412 |
base, ext = os.path.splitext(filename)
|
| 413 |
unique_filename = f"{base}_{int(time.time())}{ext}"
|
| 414 |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename)
|
| 415 |
|
| 416 |
+
logger.info(f"[UPLOAD] Saving file to: {filepath}")
|
| 417 |
file.save(filepath)
|
| 418 |
|
| 419 |
if not os.path.exists(filepath):
|
| 420 |
+
logger.error(f"[UPLOAD] File not found after save: {filepath}")
|
| 421 |
return jsonify({'error': 'Failed to save uploaded file'}), 500
|
| 422 |
|
| 423 |
+
logger.info(f"[UPLOAD] File saved successfully. Size: {os.path.getsize(filepath)} bytes")
|
| 424 |
|
| 425 |
try:
|
| 426 |
model_choice = request.form.get('model_choice', 'Gladiator SupaDot')
|
| 427 |
+
logger.info(f"[UPLOAD] Processing with model: {model_choice}")
|
| 428 |
|
| 429 |
if model_choice == 'movenet':
|
| 430 |
movenet_variant = request.form.get('movenet_variant', 'lightning')
|
| 431 |
+
logger.info(f"[UPLOAD] Using MoveNet variant: {movenet_variant}")
|
| 432 |
output_path_url = process_video_movenet(filepath)
|
| 433 |
else:
|
| 434 |
output_path_url = process_video_mediapipe(filepath)
|
| 435 |
|
| 436 |
+
logger.info(f"[UPLOAD] Processing complete. Output URL: {output_path_url}")
|
| 437 |
|
| 438 |
if not os.path.exists(os.path.join(app.config['UPLOAD_FOLDER'], os.path.basename(output_path_url))):
|
| 439 |
+
logger.error(f"[UPLOAD] Output file not found: {output_path_url}")
|
| 440 |
return jsonify({'error': 'Output video file not found'}), 500
|
| 441 |
|
| 442 |
return jsonify({
|
|
|
|
| 445 |
})
|
| 446 |
|
| 447 |
except Exception as e:
|
| 448 |
+
logger.error(f"[UPLOAD] Error processing video: {str(e)}")
|
| 449 |
traceback.print_exc()
|
| 450 |
return jsonify({'error': f'Error processing video: {str(e)}'}), 500
|
| 451 |
|
| 452 |
finally:
|
| 453 |
try:
|
| 454 |
+
if os.path.exists(filepath):
|
| 455 |
+
os.remove(filepath)
|
| 456 |
+
logger.info(f"[UPLOAD] Cleaned up input file: {filepath}")
|
| 457 |
except Exception as e:
|
| 458 |
+
logger.error(f"[UPLOAD] Error cleaning up file: {str(e)}")
|
| 459 |
|
| 460 |
except Exception as e:
|
| 461 |
+
logger.error(f"[UPLOAD] Unexpected error: {str(e)}")
|
| 462 |
traceback.print_exc()
|
| 463 |
return jsonify({'error': 'Internal server error'}), 500
|
| 464 |
+
finally:
|
| 465 |
+
cleanup_memory() # Clean up after processing
|
| 466 |
+
|
| 467 |
+
# Add error handlers
|
| 468 |
+
@app.errorhandler(413)
|
| 469 |
+
def request_entity_too_large(error):
|
| 470 |
+
return jsonify({'error': 'File too large. Maximum size is 100MB'}), 413
|
| 471 |
+
|
| 472 |
+
@app.errorhandler(500)
|
| 473 |
+
def internal_server_error(error):
|
| 474 |
+
return jsonify({'error': 'Internal server error. Please try again later.'}), 500
|
| 475 |
+
|
| 476 |
+
@app.errorhandler(404)
|
| 477 |
+
def not_found_error(error):
|
| 478 |
+
return jsonify({'error': 'Resource not found'}), 404
|
| 479 |
|
| 480 |
if __name__ == '__main__':
|
| 481 |
# Ensure the port is 7860 and debug is False for HF Spaces deployment
|
requirements.txt
CHANGED
|
@@ -78,3 +78,4 @@ tzdata==2025.2
|
|
| 78 |
urllib3==2.4.0
|
| 79 |
Werkzeug==3.1.3
|
| 80 |
wrapt==1.17.2
|
|
|
|
|
|
| 78 |
urllib3==2.4.0
|
| 79 |
Werkzeug==3.1.3
|
| 80 |
wrapt==1.17.2
|
| 81 |
+
psutil==5.9.8
|