# Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/util/misc.py # -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Modified by Xueyan Zou (xueyan@cs.wisc.edu) # -------------------------------------------------------- """ Misc functions, including distributed helpers. Mostly copy-paste from torchvision references. """ from typing import List, Optional, Tuple, Any import torch import torchvision from torch import nn, Tensor, device import torch.distributed as dist import torch.nn.functional as F from detectron2.layers import cat, shapes_to_tensor from utilities.constants import * def pad_arbitrary_tensors(tensors, padding_value=0.): max_len = torch.stack([torch.tensor(x.shape) for x in tensors]).max(dim=0)[0] padded_tensor = torch.empty([len(tensors)] + max_len.tolist(), device=tensors[0].device).fill_(padding_value) for i, x in enumerate(tensors): padded_tensor[i, :x.shape[0], :x.shape[1]] = x return padded_tensor def _max_by_axis(the_list): # type: (List[List[int]]) -> List[int] maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device): # type: (Device) -> NestedTensor # noqa cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: assert mask is not None cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): # TODO make this more general if tensor_list[0].ndim == 3: if torchvision._is_tracing(): # nested_tensor_from_tensor_list() does not export well to ONNX # call _onnx_nested_tensor_from_tensor_list() instead return _onnx_nested_tensor_from_tensor_list(tensor_list) # TODO make it support different-sized images max_size = _max_by_axis([list(img.shape) for img in tensor_list]) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = [len(tensor_list)] + max_size b, c, h, w = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False elif tensor_list[0].ndim == 2: if torchvision._is_tracing(): # nested_tensor_from_tensor_list() does not export well to ONNX # call _onnx_nested_tensor_from_tensor_list() instead return _onnx_nested_tensor_from_tensor_list(tensor_list) # TODO make it support different-sized images max_size = _max_by_axis([list(txt.shape) for txt in tensor_list]) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = [len(tensor_list)] + max_size b, c, l = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, l), dtype=torch.bool, device=device) for txt, pad_txt, m in zip(tensor_list, tensor, mask): pad_txt[: txt.shape[0], : txt.shape[1]] = txt m[: txt.shape[1]] = False else: raise ValueError("not supported") return NestedTensor(tensor, mask) def _collate_and_pad_divisibility(tensor_list: list, div=32): max_size = [] for i in range(tensor_list[0].dim()): max_size_i = torch.max( torch.tensor([img.shape[i] for img in tensor_list]).to(torch.float32) ).to(torch.int64) max_size.append(max_size_i) max_size = tuple(max_size) c,h,w = max_size pad_h = (div - h % div) if h % div != 0 else 0 pad_w = (div - w % div) if w % div != 0 else 0 max_size = (c,h+pad_h,w+pad_w) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # m[: img.shape[1], :img.shape[2]] = False # which is not yet supported in onnx padded_imgs = [] padded_masks = [] for img in tensor_list: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) padded_imgs.append(padded_img) m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) padded_masks.append(padded_mask.to(torch.bool)) return padded_imgs # _onnx_nested_tensor_from_tensor_list() is an implementation of # nested_tensor_from_tensor_list() that is supported by ONNX tracing. @torch.jit.unused def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: max_size = [] for i in range(tensor_list[0].dim()): max_size_i = torch.max( torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) ).to(torch.int64) max_size.append(max_size_i) max_size = tuple(max_size) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # m[: img.shape[1], :img.shape[2]] = False # which is not yet supported in onnx padded_imgs = [] padded_masks = [] for img in tensor_list: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) padded_imgs.append(padded_img) m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) padded_masks.append(padded_mask.to(torch.bool)) tensor = torch.stack(padded_imgs) mask = torch.stack(padded_masks) return NestedTensor(tensor, mask=mask) def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True # TODO: add background to def get_class_names(name): if name is None: return None elif 'refcoco' in name: return ["background"] elif 'biomed' in name: return BIOMED_CLASSES + ["background"] elif 'med_sam' in name: ### MedSAM class names medsam_classes = ['liver', 'lung', 'pancreas', 'stomach', 'heart', 'gallbladder', 'prostate', 'brain ventricles', 'cerebellum', 'left heart ventricle', 'right heart ventricle', 'vessel', 'polyp', 'surgical tool', 'pleural effusion', 'infection', 'gland', 'tumor'] return medsam_classes + ["background"] elif 'coco' in name: return COCO_PANOPTIC_CLASSES + ["background"] elif 'ade20k_full' in name: return ADE20K_847 + ["background"] elif 'ade' in name: return ADE_PANOPTIC_CLASSES + ["background"] elif 'scannet_41' in name: return SCAN_40 + ["background"] elif 'scannet_21' in name: return SCAN_20 + ["background"] elif 'sun' in name: return SUN_RGBD_37 + ["background"] elif 'voc' in name: return PASCAL_CLASSES + ["background"] elif name == 'cityscapes_fine_sem_seg_val': return CITYSCAPES + ["background"] elif name == 'cityscapes_fine_instance_seg_val': return CITYSCAPES_THING + ["background"] elif name in ['cityscapes_fine_panoptic_val']: return CITYSCAPES + ["background"] elif name == 'bdd10k_val_sem_seg': return BDD_SEM + ["background"] elif name == 'bdd10k_40_panoptic_val': return BDD_PANO + ["background"] elif 'vlp' in name: return ["background"] else: assert False, "text dataset name {} is not defined".format(name) def get_iou(gt_masks, pred_masks, ignore_label=-1): rev_ignore_mask = ~(gt_masks == ignore_label) gt_masks = gt_masks.bool() n,h,w = gt_masks.shape intersection = ((gt_masks & pred_masks) & rev_ignore_mask).reshape(n,h*w).sum(dim=-1) union = ((gt_masks | pred_masks) & rev_ignore_mask).reshape(n,h*w).sum(dim=-1) ious = (intersection / union) return ious class Spatial_ImageList(object): """ Structure that holds a list of images (of possibly varying sizes) as a single tensor. This works by padding the images to the same size. The original sizes of each image is stored in `image_sizes`. Attributes: image_sizes (list[tuple[int, int]]): each tuple is (h, w). During tracing, it becomes list[Tensor] instead. """ def __init__(self, tensor: torch.Tensor, image_sizes: List[Tuple[int, int]]): """ Arguments: tensor (Tensor): of shape (N, H, W) or (N, C_1, ..., C_K, H, W) where K >= 1 image_sizes (list[tuple[int, int]]): Each tuple is (h, w). It can be smaller than (H, W) due to padding. """ self.tensor = tensor self.image_sizes = image_sizes def __len__(self) -> int: return len(self.image_sizes) def __getitem__(self, idx) -> torch.Tensor: """ Access the individual image in its original size. Args: idx: int or slice Returns: Tensor: an image of shape (H, W) or (C_1, ..., C_K, H, W) where K >= 1 """ size = self.image_sizes[idx] return self.tensor[idx, ..., : size[0], : size[1]] @torch.jit.unused def to(self, *args: Any, **kwargs: Any) -> "Spatial_ImageList": cast_tensor = self.tensor.to(*args, **kwargs) return Spatial_ImageList(cast_tensor, self.image_sizes) @property def device(self) -> device: return self.tensor.device @staticmethod def from_tensors( tensors: List[torch.Tensor], size_divisibility: int = 0, pad_value: float = 0.0 ) -> "Spatial_ImageList": """ Args: tensors: a tuple or list of `torch.Tensor`, each of shape (Hi, Wi) or (C_1, ..., C_K, Hi, Wi) where K >= 1. The Tensors will be padded to the same shape with `pad_value`. size_divisibility (int): If `size_divisibility > 0`, add padding to ensure the common height and width is divisible by `size_divisibility`. This depends on the model and many models need a divisibility of 32. pad_value (float): value to pad Returns: an `Spatial_ImageList`. """ assert len(tensors) > 0 assert isinstance(tensors, (tuple, list)) for t in tensors: assert isinstance(t, torch.Tensor), type(t) image_sizes = [(im.shape[-3], im.shape[-2], im.shape[-1]) for im in tensors] image_sizes_tensor = [shapes_to_tensor(x) for x in image_sizes] max_size = torch.stack(image_sizes_tensor).max(0).values if size_divisibility > 1: stride = size_divisibility # the last two dims are H,W, both subject to divisibility requirement max_size[-2:] = (max_size[-2:] + (stride - 1)).div(stride, rounding_mode="floor") * stride # handle weirdness of scripting and tracing ... if torch.jit.is_scripting(): max_size: List[int] = max_size.to(dtype=torch.long).tolist() else: if torch.jit.is_tracing(): image_sizes = image_sizes_tensor if len(tensors) == 1: # This seems slightly (2%) faster. # TODO: check whether it's faster for multiple images as well image_size = image_sizes[0] padding_size = [0, max_size[-1] - image_size[2], 0, max_size[-2] - image_size[1]] batched_imgs = F.pad(tensors[0], padding_size, value=pad_value).unsqueeze_(0) else: # max_size can be a tensor in tracing mode, therefore convert to list batch_shape = [len(tensors)] + list(tensors[0].shape[:-3]) + list(max_size) batched_imgs = tensors[0].new_full(batch_shape, pad_value) for img, pad_img in zip(tensors, batched_imgs): pad_img[:img.shape[-3],:img.shape[-2],:img.shape[-1]].copy_(img) return Spatial_ImageList(batched_imgs.contiguous(), image_sizes)