import gradio as gr import os from typing import Tuple, Optional import os import shutil import sys from pathlib import Path import cv2 import gradio as gr import numpy as np import spaces # import supervision as sv import torch from PIL import Image from tqdm import tqdm import sys from pathlib import Path from huggingface_hub import login # from dotenv import load_dotenv # For Hugging Face Spaces, secrets are automatically loaded as environment variables token = os.getenv("HF_TOKEN") if token: login(token=token) # Clear Hugging Face cache # cache_dirs = [ # "/home/user/.cache/huggingface/", # "/home/user/.cache/torch/", # "/home/user/.cache/pip/" # ] # for cache_dir in cache_dirs: # if os.path.exists(cache_dir): # print(f"Clearing cache: {cache_dir}") # shutil.rmtree(cache_dir, ignore_errors=True) # Add the current directory to Python path current_dir = Path(__file__).parent sys.path.append(str(current_dir)) # sys.path.append("./BiomedParse/") # BIOMEDPARSE_PATH = Path(__file__).parent / "BiomedParse" # sys.path.append(str(BIOMEDPARSE_PATH)) # sys.path.append(str(BIOMEDPARSE_PATH / "BiomedParse")) # Add the inner BiomedParse directory from modeling.BaseModel import BaseModel from modeling import build_model from utilities.arguments import load_opt_from_config_files from utilities.constants import BIOMED_CLASSES from inference_utils.inference import interactive_infer_image from inference_utils.output_processing import check_mask_stats from inference_utils.processing_utils import read_rgb import spaces # breakpoint() MARKDOWN = """

AiAI

CyberBrain AI ድinቅneሽ YouTube

This demo integrates BiomedParse, a foundation model for joint segmentation, detection, and recognition across 9 biomedical imaging modalities. The model supports CT, MRI, X-Ray, Pathology, Ultrasound, Endoscope, Fundus, Dermoscopy, and OCT.

""" IMAGE_PROCESSING_EXAMPLES = [ ["BiomedParse Segmentation", "https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/T0011.jpg", "Optic disc in retinal Fundus"], ["BiomedParse Segmentation", "https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/Part_3_226_pathology_breast.png", "optic disc, optic cup"], ["BiomedParse Segmentation", "https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/covid_1585.png", "COVID-19 infection in chest X-Ray"], ["BiomedParse Segmentation", "https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/TCGA_HT_7856_19950831_8_MRI-FLAIR_brain.png", "Lower-grade glioma in brain MRI"], ["BiomedParse Segmentation", "https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/LIDC-IDRI-0140_143_280_CT_lung.png", "COVID-19 infection in chest CT"], ["BiomedParse Segmentation", "https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/144DME_as_F.jpeg", "Cystoid macular edema in retinal OCT"], ["BiomedParse Segmentation", "https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/Part_1_516_pathology_breast.png", "Glandular structure in colon Pathology"], ["BiomedParse Segmentation", "https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/ISIC_0015551.jpg", "Melanoma in skin Dermoscopy"], ["BiomedParse Segmentation", "https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/C3_EndoCV2021_00462.jpg", "Neoplastic polyp in colon Endoscope"] ] BIOMEDPARSE_MODES = { "CT": ["abdomen", "colon", "liver", "lung", "pelvis"], "MRI": ["brain", "heart", "prostate", "abdomen"], "MRI-FLAIR": ["brain"], "MRI-T1-Gd": ["brain"], "MRI-T2": ["prostate"], "OCT": ["retinal"], "X-Ray": ["chest"], "Dermoscopy": ["skin"], "Endoscope": ["colon"], "Fundus": ["retinal"], "Pathology": ["bladder", "breast", "cervix", "colon", "esophagus", "kidney", "liver", "ovarian", "prostate", "stomach", "testis", "thyroid", "uterus"], "Ultrasound": ["breast", "heart", "transperineal"] } IMAGE_INFERENCE_MODES = [ "BIOMED SEGMENTATION", "BIOMED DETECTION", "BIOMED RECOGNITION", "BIOMED SEGMENTATION + DETECTION", "BIOMED SEGMENTATION + RECOGNITION", "BIOMED DETECTION + RECOGNITION", "BIOMED SEGMENTATION + DETECTION + RECOGNITION" ] def on_mode_dropdown_change(selected_mode): if selected_mode in IMAGE_INFERENCE_MODES: # Show modality dropdown and hide other inputs initially return [ gr.Dropdown(visible=True, choices=list(BIOMEDPARSE_MODES.keys()), label="Modality"), gr.Dropdown(visible=True, label="Anatomical Site"), gr.Textbox(visible=False), gr.Textbox(visible=False) ] else: # Original behavior for other modes return [ gr.Dropdown(visible=False), gr.Dropdown(visible=False), gr.Textbox(visible=True), gr.Textbox(visible=(selected_mode == None)) ] def on_modality_change(modality): if modality: return gr.Dropdown(choices=BIOMEDPARSE_MODES[modality], visible=True) return gr.Dropdown(visible=False) def initialize_model(): opt = load_opt_from_config_files(["configs/biomedparse_inference.yaml"]) pretrained_pth = 'hf_hub:microsoft/BiomedParse' opt['device'] = 'cuda' if torch.cuda.is_available() else 'cpu' model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval() with torch.no_grad(): model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings( BIOMED_CLASSES + ["background"], is_eval=True ) return model model = initialize_model() # Utility functions @spaces.GPU @torch.inference_mode() @torch.autocast(device_type="cuda", dtype=torch.bfloat16) def process_image(image_path, text_prompts, modality): image = read_rgb(image_path) text_prompts = [prompt.strip() for prompt in text_prompts.split(',')] # Run inference pred_masks = interactive_infer_image(model, Image.fromarray(image), text_prompts) # Prepare outputs results = [] dice_scores = [] p_values = [] for i, prompt in enumerate(text_prompts): # Calculate p-value for the selected modality print("PROMPT: ", prompt, flush=True) p_value = check_mask_stats(image, pred_masks[i] * 255, modality, prompt) p_values.append(f"P-value for '{prompt}' ({modality}): {p_value:.4f}") # Overlay predictions on the image overlay_image = image.copy() overlay_image[pred_masks[i] > 0.5] = [255, 0, 0] # Highlight predictions in red results.append(overlay_image) return results, p_values # Define Gradio interface with gr.Blocks() as demo: gr.HTML(MARKDOWN) with gr.Row(): with gr.Column(): image_input = gr.Image(type="filepath", label="Input Image") prompts_input = gr.Textbox(lines=2, placeholder="Enter prompts separated by commas...", label="Prompts") modality_dropdown = gr.Dropdown( choices=list(BIOMEDPARSE_MODES.keys()), value=list(BIOMEDPARSE_MODES.keys())[0], label="Modality" ) submit_btn = gr.Button("Submit") with gr.Column(): output_gallery = gr.Gallery(label="Findings") pvalue_output = gr.Textbox(label="Confidence (P-values)", interactive=False) submit_btn.click( process_image, inputs=[image_input, prompts_input, modality_dropdown], outputs=[output_gallery, pvalue_output] ) # with gr.Row(): # gr.Examples( # fn=process_image, # examples=IMAGE_PROCESSING_EXAMPLES, # inputs=[ # image_processing_mode_dropdown_component, # image_processing_image_input_component, # image_processing_text_input_component # ], # outputs=[ # image_processing_image_output_component, # image_processing_text_output_component # ], # run_on_click=True # ) # Launch the app demo.launch()