|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import time |
|
import numpy as np |
|
import logging |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
from detectron2.utils.file_io import PathManager |
|
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec |
|
|
|
from .build import register_backbone |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
class Mlp(nn.Module): |
|
""" Multilayer perceptron.""" |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
class FocalModulation(nn.Module): |
|
""" Focal Modulation |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
focal_level (int): Number of focal levels |
|
focal_window (int): Focal window size at focal level 1 |
|
focal_factor (int, default=2): Step to increase the focal window |
|
use_postln (bool, default=False): Whether use post-modulation layernorm |
|
""" |
|
|
|
def __init__(self, dim, proj_drop=0., focal_level=2, focal_window=7, focal_factor=2, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
|
|
|
|
self.focal_level = focal_level |
|
self.focal_window = focal_window |
|
self.focal_factor = focal_factor |
|
self.use_postln_in_modulation = use_postln_in_modulation |
|
self.scaling_modulator = scaling_modulator |
|
|
|
self.f = nn.Linear(dim, 2*dim+(self.focal_level+1), bias=True) |
|
self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True) |
|
|
|
self.act = nn.GELU() |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.focal_layers = nn.ModuleList() |
|
|
|
if self.use_postln_in_modulation: |
|
self.ln = nn.LayerNorm(dim) |
|
|
|
for k in range(self.focal_level): |
|
kernel_size = self.focal_factor*k + self.focal_window |
|
self.focal_layers.append( |
|
nn.Sequential( |
|
nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, |
|
padding=kernel_size//2, bias=False), |
|
nn.GELU(), |
|
) |
|
) |
|
|
|
def forward(self, x): |
|
""" Forward function. |
|
|
|
Args: |
|
x: input features with shape of (B, H, W, C) |
|
""" |
|
B, nH, nW, C = x.shape |
|
x = self.f(x) |
|
x = x.permute(0, 3, 1, 2).contiguous() |
|
q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1) |
|
|
|
ctx_all = 0 |
|
for l in range(self.focal_level): |
|
ctx = self.focal_layers[l](ctx) |
|
ctx_all = ctx_all + ctx*gates[:, l:l+1] |
|
ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) |
|
ctx_all = ctx_all + ctx_global*gates[:,self.focal_level:] |
|
|
|
if self.scaling_modulator: |
|
ctx_all = ctx_all / (self.focal_level + 1) |
|
|
|
x_out = q * self.h(ctx_all) |
|
x_out = x_out.permute(0, 2, 3, 1).contiguous() |
|
if self.use_postln_in_modulation: |
|
x_out = self.ln(x_out) |
|
x_out = self.proj(x_out) |
|
x_out = self.proj_drop(x_out) |
|
return x_out |
|
|
|
class FocalModulationBlock(nn.Module): |
|
""" Focal Modulation Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
focal_level (int): number of focal levels |
|
focal_window (int): focal kernel size at level 1 |
|
""" |
|
|
|
def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, |
|
focal_level=2, focal_window=9, |
|
use_postln=False, use_postln_in_modulation=False, |
|
scaling_modulator=False, |
|
use_layerscale=False, |
|
layerscale_value=1e-4): |
|
super().__init__() |
|
self.dim = dim |
|
self.mlp_ratio = mlp_ratio |
|
self.focal_window = focal_window |
|
self.focal_level = focal_level |
|
self.use_postln = use_postln |
|
self.use_layerscale = use_layerscale |
|
|
|
self.dw1 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim) |
|
self.norm1 = norm_layer(dim) |
|
self.modulation = FocalModulation( |
|
dim, focal_window=self.focal_window, focal_level=self.focal_level, proj_drop=drop, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator |
|
) |
|
|
|
self.dw2 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
self.H = None |
|
self.W = None |
|
|
|
self.gamma_1 = 1.0 |
|
self.gamma_2 = 1.0 |
|
if self.use_layerscale: |
|
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) |
|
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) |
|
|
|
def forward(self, x): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
B, L, C = x.shape |
|
H, W = self.H, self.W |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous() |
|
x = x + self.dw1(x) |
|
x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) |
|
|
|
shortcut = x |
|
if not self.use_postln: |
|
x = self.norm1(x) |
|
x = x.view(B, H, W, C) |
|
|
|
|
|
x = self.modulation(x).view(B, H * W, C) |
|
x = shortcut + self.drop_path(self.gamma_1 * x) |
|
if self.use_postln: |
|
x = self.norm1(x) |
|
|
|
x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous() |
|
x = x + self.dw2(x) |
|
x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) |
|
|
|
if not self.use_postln: |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(x)) |
|
x = self.norm2(x) |
|
|
|
return x |
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic focal modulation layer for one stage. |
|
|
|
Args: |
|
dim (int): Number of feature channels |
|
depth (int): Depths of this stage. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
focal_level (int): Number of focal levels |
|
focal_window (int): Focal window size at focal level 1 |
|
use_conv_embed (bool): Use overlapped convolution for patch embedding or now. Default: False |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
depth, |
|
mlp_ratio=4., |
|
drop=0., |
|
drop_path=0., |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
focal_window=9, |
|
focal_level=2, |
|
use_conv_embed=False, |
|
use_postln=False, |
|
use_postln_in_modulation=False, |
|
scaling_modulator=False, |
|
use_layerscale=False, |
|
use_checkpoint=False, |
|
use_pre_norm=False, |
|
): |
|
super().__init__() |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
FocalModulationBlock( |
|
dim=dim, |
|
mlp_ratio=mlp_ratio, |
|
drop=drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
focal_window=focal_window, |
|
focal_level=focal_level, |
|
use_postln=use_postln, |
|
use_postln_in_modulation=use_postln_in_modulation, |
|
scaling_modulator=scaling_modulator, |
|
use_layerscale=use_layerscale, |
|
norm_layer=norm_layer) |
|
for i in range(depth)]) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample( |
|
patch_size=2, |
|
in_chans=dim, embed_dim=2*dim, |
|
use_conv_embed=use_conv_embed, |
|
norm_layer=norm_layer, |
|
is_stem=False, |
|
use_pre_norm=use_pre_norm |
|
) |
|
|
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
for blk in self.blocks: |
|
blk.H, blk.W = H, W |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
if self.downsample is not None: |
|
x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W) |
|
x_down = self.downsample(x_reshaped) |
|
x_down = x_down.flatten(2).transpose(1, 2) |
|
Wh, Ww = (H + 1) // 2, (W + 1) // 2 |
|
return x, H, W, x_down, Wh, Ww |
|
else: |
|
return x, H, W, x, H, W |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
|
|
Args: |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
use_conv_embed (bool): Whether use overlapped convolution for patch embedding. Default: False |
|
is_stem (bool): Is the stem block or not. |
|
""" |
|
|
|
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, use_conv_embed=False, is_stem=False, use_pre_norm=False): |
|
super().__init__() |
|
patch_size = to_2tuple(patch_size) |
|
self.patch_size = patch_size |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
self.use_pre_norm = use_pre_norm |
|
|
|
if use_conv_embed: |
|
|
|
if is_stem: |
|
kernel_size = 7; padding = 3; stride = 4 |
|
else: |
|
kernel_size = 3; padding = 1; stride = 2 |
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) |
|
else: |
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
if self.use_pre_norm: |
|
if norm_layer is not None: |
|
self.norm = norm_layer(in_chans) |
|
else: |
|
self.norm = None |
|
else: |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
B, C, H, W = x.size() |
|
if W % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) |
|
if H % self.patch_size[0] != 0: |
|
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) |
|
|
|
if self.use_pre_norm: |
|
if self.norm is not None: |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x).transpose(1, 2).view(B, C, H, W) |
|
x = self.proj(x) |
|
else: |
|
x = self.proj(x) |
|
if self.norm is not None: |
|
Wh, Ww = x.size(2), x.size(3) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) |
|
|
|
return x |
|
|
|
|
|
class FocalNet(nn.Module): |
|
""" FocalNet backbone. |
|
|
|
Args: |
|
pretrain_img_size (int): Input image size for training the pretrained model, |
|
used in absolute postion embedding. Default 224. |
|
patch_size (int | tuple(int)): Patch size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
depths (tuple[int]): Depths of each Swin Transformer stage. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
drop_rate (float): Dropout rate. |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.2. |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True. |
|
out_indices (Sequence[int]): Output from which stages. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. |
|
focal_levels (Sequence[int]): Number of focal levels at four stages |
|
focal_windows (Sequence[int]): Focal window sizes at first focal level at four stages |
|
use_conv_embed (bool): Whether use overlapped convolution for patch embedding |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
pretrain_img_size=1600, |
|
patch_size=4, |
|
in_chans=3, |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
mlp_ratio=4., |
|
drop_rate=0., |
|
drop_path_rate=0.2, |
|
norm_layer=nn.LayerNorm, |
|
patch_norm=True, |
|
out_indices=[0, 1, 2, 3], |
|
frozen_stages=-1, |
|
focal_levels=[2,2,2,2], |
|
focal_windows=[9,9,9,9], |
|
use_pre_norms=[False, False, False, False], |
|
use_conv_embed=False, |
|
use_postln=False, |
|
use_postln_in_modulation=False, |
|
scaling_modulator=False, |
|
use_layerscale=False, |
|
use_checkpoint=False, |
|
): |
|
super().__init__() |
|
|
|
self.pretrain_img_size = pretrain_img_size |
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.patch_norm = patch_norm |
|
self.out_indices = out_indices |
|
self.frozen_stages = frozen_stages |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None, |
|
use_conv_embed=use_conv_embed, is_stem=True, use_pre_norm=False) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = BasicLayer( |
|
dim=int(embed_dim * 2 ** i_layer), |
|
depth=depths[i_layer], |
|
mlp_ratio=mlp_ratio, |
|
drop=drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None, |
|
focal_window=focal_windows[i_layer], |
|
focal_level=focal_levels[i_layer], |
|
use_pre_norm=use_pre_norms[i_layer], |
|
use_conv_embed=use_conv_embed, |
|
use_postln=use_postln, |
|
use_postln_in_modulation=use_postln_in_modulation, |
|
scaling_modulator=scaling_modulator, |
|
use_layerscale=use_layerscale, |
|
use_checkpoint=use_checkpoint) |
|
self.layers.append(layer) |
|
|
|
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] |
|
self.num_features = num_features |
|
|
|
|
|
|
|
for i_layer in self.out_indices: |
|
layer = norm_layer(num_features[i_layer]) |
|
layer_name = f'norm{i_layer}' |
|
self.add_module(layer_name, layer) |
|
|
|
self._freeze_stages() |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
self.patch_embed.eval() |
|
for param in self.patch_embed.parameters(): |
|
param.requires_grad = False |
|
|
|
if self.frozen_stages >= 2: |
|
self.pos_drop.eval() |
|
for i in range(0, self.frozen_stages - 1): |
|
m = self.layers[i] |
|
m.eval() |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
def init_weights(self, pretrained=None): |
|
"""Initialize the weights in backbone. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
|
|
def _init_weights(m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
if isinstance(pretrained, str): |
|
self.apply(_init_weights) |
|
logger = get_root_logger() |
|
load_checkpoint(self, pretrained, strict=False, logger=logger) |
|
elif pretrained is None: |
|
self.apply(_init_weights) |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True): |
|
model_dict = self.state_dict() |
|
|
|
missed_dict = [k for k in model_dict.keys() if k not in pretrained_dict] |
|
logger.info(f'=> Missed keys {missed_dict}') |
|
unexpected_dict = [k for k in pretrained_dict.keys() if k not in model_dict] |
|
logger.info(f'=> Unexpected keys {unexpected_dict}') |
|
|
|
pretrained_dict = { |
|
k: v for k, v in pretrained_dict.items() |
|
if k in model_dict.keys() |
|
} |
|
|
|
need_init_state_dict = {} |
|
for k, v in pretrained_dict.items(): |
|
need_init = ( |
|
( |
|
k.split('.')[0] in pretrained_layers |
|
or pretrained_layers[0] == '*' |
|
) |
|
and 'relative_position_index' not in k |
|
and 'attn_mask' not in k |
|
) |
|
|
|
if need_init: |
|
|
|
|
|
|
|
if ('pool_layers' in k) or ('focal_layers' in k) and v.size() != model_dict[k].size(): |
|
table_pretrained = v |
|
table_current = model_dict[k] |
|
fsize1 = table_pretrained.shape[2] |
|
fsize2 = table_current.shape[2] |
|
|
|
|
|
if fsize1 < fsize2: |
|
table_pretrained_resized = torch.zeros(table_current.shape) |
|
table_pretrained_resized[:, :, (fsize2-fsize1)//2:-(fsize2-fsize1)//2, (fsize2-fsize1)//2:-(fsize2-fsize1)//2] = table_pretrained |
|
v = table_pretrained_resized |
|
elif fsize1 > fsize2: |
|
table_pretrained_resized = table_pretrained[:, :, (fsize1-fsize2)//2:-(fsize1-fsize2)//2, (fsize1-fsize2)//2:-(fsize1-fsize2)//2] |
|
v = table_pretrained_resized |
|
|
|
|
|
if ("modulation.f" in k or "pre_conv" in k): |
|
table_pretrained = v |
|
table_current = model_dict[k] |
|
if table_pretrained.shape != table_current.shape: |
|
if len(table_pretrained.shape) == 2: |
|
dim = table_pretrained.shape[1] |
|
assert table_current.shape[1] == dim |
|
L1 = table_pretrained.shape[0] |
|
L2 = table_current.shape[0] |
|
|
|
if L1 < L2: |
|
table_pretrained_resized = torch.zeros(table_current.shape) |
|
|
|
table_pretrained_resized[:2*dim] = table_pretrained[:2*dim] |
|
|
|
table_pretrained_resized[-1] = table_pretrained[-1] |
|
|
|
table_pretrained_resized[2*dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1] |
|
|
|
v = table_pretrained_resized |
|
elif L1 > L2: |
|
raise NotImplementedError |
|
elif len(table_pretrained.shape) == 1: |
|
dim = table_pretrained.shape[0] |
|
L1 = table_pretrained.shape[0] |
|
L2 = table_current.shape[0] |
|
if L1 < L2: |
|
table_pretrained_resized = torch.zeros(table_current.shape) |
|
|
|
table_pretrained_resized[:dim] = table_pretrained[:dim] |
|
|
|
table_pretrained_resized[-1] = table_pretrained[-1] |
|
|
|
|
|
|
|
v = table_pretrained_resized |
|
elif L1 > L2: |
|
raise NotImplementedError |
|
|
|
need_init_state_dict[k] = v |
|
|
|
self.load_state_dict(need_init_state_dict, strict=False) |
|
|
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
tic = time.time() |
|
x = self.patch_embed(x) |
|
Wh, Ww = x.size(2), x.size(3) |
|
|
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.pos_drop(x) |
|
|
|
outs = {} |
|
for i in range(self.num_layers): |
|
layer = self.layers[i] |
|
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) |
|
if i in self.out_indices: |
|
norm_layer = getattr(self, f'norm{i}') |
|
x_out = norm_layer(x_out) |
|
|
|
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() |
|
outs["res{}".format(i + 2)] = out |
|
|
|
if len(self.out_indices) == 0: |
|
outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() |
|
|
|
toc = time.time() |
|
return outs |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode while keep layers freezed.""" |
|
super(FocalNet, self).train(mode) |
|
self._freeze_stages() |
|
|
|
|
|
class D2FocalNet(FocalNet, Backbone): |
|
def __init__(self, cfg, input_shape): |
|
|
|
pretrain_img_size = cfg['BACKBONE']['FOCAL']['PRETRAIN_IMG_SIZE'] |
|
patch_size = cfg['BACKBONE']['FOCAL']['PATCH_SIZE'] |
|
in_chans = 3 |
|
embed_dim = cfg['BACKBONE']['FOCAL']['EMBED_DIM'] |
|
depths = cfg['BACKBONE']['FOCAL']['DEPTHS'] |
|
mlp_ratio = cfg['BACKBONE']['FOCAL']['MLP_RATIO'] |
|
drop_rate = cfg['BACKBONE']['FOCAL']['DROP_RATE'] |
|
drop_path_rate = cfg['BACKBONE']['FOCAL']['DROP_PATH_RATE'] |
|
norm_layer = nn.LayerNorm |
|
patch_norm = cfg['BACKBONE']['FOCAL']['PATCH_NORM'] |
|
use_checkpoint = cfg['BACKBONE']['FOCAL']['USE_CHECKPOINT'] |
|
out_indices = cfg['BACKBONE']['FOCAL']['OUT_INDICES'] |
|
scaling_modulator = cfg['BACKBONE']['FOCAL'].get('SCALING_MODULATOR', False) |
|
|
|
super().__init__( |
|
pretrain_img_size, |
|
patch_size, |
|
in_chans, |
|
embed_dim, |
|
depths, |
|
mlp_ratio, |
|
drop_rate, |
|
drop_path_rate, |
|
norm_layer, |
|
patch_norm, |
|
out_indices, |
|
focal_levels=cfg['BACKBONE']['FOCAL']['FOCAL_LEVELS'], |
|
focal_windows=cfg['BACKBONE']['FOCAL']['FOCAL_WINDOWS'], |
|
use_conv_embed=cfg['BACKBONE']['FOCAL']['USE_CONV_EMBED'], |
|
use_postln=cfg['BACKBONE']['FOCAL']['USE_POSTLN'], |
|
use_postln_in_modulation=cfg['BACKBONE']['FOCAL']['USE_POSTLN_IN_MODULATION'], |
|
scaling_modulator=scaling_modulator, |
|
use_layerscale=cfg['BACKBONE']['FOCAL']['USE_LAYERSCALE'], |
|
use_checkpoint=use_checkpoint, |
|
) |
|
|
|
self._out_features = cfg['BACKBONE']['FOCAL']['OUT_FEATURES'] |
|
|
|
self._out_feature_strides = { |
|
"res2": 4, |
|
"res3": 8, |
|
"res4": 16, |
|
"res5": 32, |
|
} |
|
self._out_feature_channels = { |
|
"res2": self.num_features[0], |
|
"res3": self.num_features[1], |
|
"res4": self.num_features[2], |
|
"res5": self.num_features[3], |
|
} |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. |
|
Returns: |
|
dict[str->Tensor]: names and the corresponding features |
|
""" |
|
assert ( |
|
x.dim() == 4 |
|
), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!" |
|
outputs = {} |
|
y = super().forward(x) |
|
for k in y.keys(): |
|
if k in self._out_features: |
|
outputs[k] = y[k] |
|
return outputs |
|
|
|
def output_shape(self): |
|
return { |
|
name: ShapeSpec( |
|
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] |
|
) |
|
for name in self._out_features |
|
} |
|
|
|
@property |
|
def size_divisibility(self): |
|
return 32 |
|
|
|
@register_backbone |
|
def get_focal_backbone(cfg): |
|
focal = D2FocalNet(cfg['MODEL'], 224) |
|
|
|
if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True: |
|
filename = cfg['MODEL']['BACKBONE']['PRETRAINED'] |
|
logger.info(f'=> init from {filename}') |
|
with PathManager.open(filename, "rb") as f: |
|
ckpt = torch.load(f)['model'] |
|
focal.load_weights(ckpt, cfg['MODEL']['BACKBONE']['FOCAL'].get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE']) |
|
|
|
return focal |