|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Modules to compute the matching cost and solve the corresponding LSAP. |
|
""" |
|
import warnings |
|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from scipy.optimize import linear_sum_assignment |
|
from torch import nn |
|
from torch.cuda.amp import autocast |
|
|
|
from .point_features import point_sample |
|
from ..language.loss import vl_similarity |
|
|
|
def batch_dice_loss(inputs: torch.Tensor, targets: torch.Tensor): |
|
""" |
|
Compute the DICE loss, similar to generalized IOU for masks |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
""" |
|
inputs = inputs.sigmoid() |
|
inputs = inputs.flatten(1) |
|
numerator = 2 * torch.einsum("nc,mc->nm", inputs, targets) |
|
denominator = inputs.sum(-1)[:, None] + targets.sum(-1)[None, :] |
|
loss = 1 - (numerator + 1) / (denominator + 1) |
|
return loss |
|
|
|
|
|
batch_dice_loss_jit = torch.jit.script( |
|
batch_dice_loss |
|
) |
|
|
|
|
|
def batch_sigmoid_ce_loss(inputs: torch.Tensor, targets: torch.Tensor): |
|
""" |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
Returns: |
|
Loss tensor |
|
""" |
|
hw = inputs.shape[1] |
|
|
|
pos = F.binary_cross_entropy_with_logits( |
|
inputs, torch.ones_like(inputs), reduction="none" |
|
) |
|
neg = F.binary_cross_entropy_with_logits( |
|
inputs, torch.zeros_like(inputs), reduction="none" |
|
) |
|
|
|
loss = torch.einsum("nc,mc->nm", pos, targets) + torch.einsum( |
|
"nc,mc->nm", neg, (1 - targets) |
|
) |
|
|
|
return loss / hw |
|
|
|
|
|
batch_sigmoid_ce_loss_jit = torch.jit.script( |
|
batch_sigmoid_ce_loss |
|
) |
|
|
|
|
|
class HungarianMatcher(nn.Module): |
|
"""This class computes an assignment between the targets and the predictions of the network |
|
|
|
For efficiency reasons, the targets don't include the no_object. Because of this, in general, |
|
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, |
|
while the others are un-matched (and thus treated as non-objects). |
|
""" |
|
|
|
def __init__(self, cost_class: float = 1, cost_mask: float = 1, cost_dice: float = 1, num_points: int = 0, spatial_cost = None): |
|
"""Creates the matcher |
|
|
|
Params: |
|
cost_class: This is the relative weight of the classification error in the matching cost |
|
cost_mask: This is the relative weight of the focal loss of the binary mask in the matching cost |
|
cost_dice: This is the relative weight of the dice loss of the binary mask in the matching cost |
|
""" |
|
super().__init__() |
|
self.cost_class = cost_class |
|
self.cost_mask = cost_mask |
|
self.cost_dice = cost_dice |
|
|
|
self.num_points = num_points |
|
self.spatial_cost_class = cost_class |
|
self.spatial_cost_mask = cost_mask |
|
self.spatial_cost_dice = cost_dice |
|
assert cost_class != 0 or cost_mask != 0 or cost_dice != 0, "all costs cant be 0" |
|
|
|
@torch.no_grad() |
|
def memory_efficient_forward(self, outputs, targets): |
|
"""More memory-friendly matching""" |
|
bs, num_queries = outputs["pred_logits"].shape[:2] |
|
|
|
if bs == 0 or len(targets) == 0: |
|
return None |
|
|
|
indices = [] |
|
|
|
|
|
for b in range(bs): |
|
out_prob = outputs["pred_logits"][b].softmax(-1) |
|
tgt_ids = targets[b]["labels"] |
|
|
|
|
|
|
|
|
|
cost_class = -out_prob[:, tgt_ids] |
|
|
|
out_mask = outputs["pred_masks"][b] |
|
|
|
tgt_mask = targets[b]["masks"].to(out_mask) |
|
|
|
out_mask = out_mask[:, None] |
|
tgt_mask = tgt_mask[:, None] |
|
|
|
point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) |
|
|
|
tgt_mask = point_sample( |
|
tgt_mask, |
|
point_coords.repeat(tgt_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
out_mask = point_sample( |
|
out_mask, |
|
point_coords.repeat(out_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
with autocast(enabled=False): |
|
out_mask = out_mask.float() |
|
tgt_mask = tgt_mask.float() |
|
|
|
cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) |
|
|
|
|
|
cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) |
|
|
|
|
|
C = ( |
|
self.cost_mask * cost_mask |
|
+ self.cost_class * cost_class |
|
+ self.cost_dice * cost_dice |
|
) |
|
C = C.reshape(num_queries, -1).cpu() |
|
if C.isnan().any(): |
|
C[C.isnan()] = 1e6 |
|
warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") |
|
raise |
|
indices.append(linear_sum_assignment(C)) |
|
|
|
return [ |
|
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) |
|
for i, j in indices |
|
] |
|
|
|
@torch.no_grad() |
|
def openimage_forward(self, outputs, targets, extra): |
|
"""More memory-friendly matching""" |
|
bs, num_queries = outputs["pred_captions"].shape[:2] |
|
if bs == 0 or len(targets) == 0: |
|
return None |
|
|
|
neg_class_emb = extra['neg_class_emb'] |
|
neg_hash = extra['neg_hash'] |
|
_, unique_indices = np.unique(neg_hash.cpu().numpy(), return_index=True) |
|
neg_class_emb = neg_class_emb[unique_indices] |
|
neg_hash = neg_hash[unique_indices] |
|
|
|
indices = [] |
|
pred_logits = [] |
|
|
|
for b in range(bs): |
|
_pos_class_emb = targets[b]['pos_class_emb'] |
|
_pos_hash = targets[b]['pos_hash'] |
|
_neg_overlap_pos = ~(neg_hash[..., None] == _pos_hash).any(-1) |
|
_neg_class_emb = neg_class_emb[_neg_overlap_pos] |
|
t_emb = torch.cat((_pos_class_emb, _neg_class_emb)) |
|
v_emb = outputs["pred_captions"][b] |
|
del _pos_class_emb |
|
del _neg_class_emb |
|
|
|
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) |
|
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) |
|
|
|
out_prob = vl_similarity(v_emb, t_emb, temperature=extra['lang_logit']) |
|
pred_logits += [out_prob] |
|
out_prob = out_prob.softmax(-1) |
|
tgt_ids = targets[b]["labels"] |
|
|
|
|
|
|
|
cost_class = -out_prob[:, tgt_ids] |
|
|
|
out_mask = outputs["pred_masks"][b] |
|
|
|
tgt_mask = targets[b]["masks"].to(out_mask) |
|
|
|
out_mask = out_mask[:, None] |
|
tgt_mask = tgt_mask[:, None] |
|
|
|
point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) |
|
|
|
tgt_mask = point_sample( |
|
tgt_mask, |
|
point_coords.repeat(tgt_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
out_mask = point_sample( |
|
out_mask, |
|
point_coords.repeat(out_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
with autocast(enabled=False): |
|
out_mask = out_mask.float() |
|
tgt_mask = tgt_mask.float() |
|
|
|
cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) |
|
|
|
|
|
cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) |
|
|
|
|
|
C = ( |
|
self.cost_mask * cost_mask |
|
+ self.cost_class * cost_class |
|
+ self.cost_dice * cost_dice |
|
) |
|
C = C.reshape(num_queries, -1).cpu() |
|
if C.isnan().any(): |
|
C[C.isnan()] = 1e6 |
|
warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") |
|
raise |
|
indices.append(linear_sum_assignment(C)) |
|
|
|
return [ |
|
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) |
|
for i, j in indices |
|
], pred_logits |
|
|
|
@torch.no_grad() |
|
def grounding_forward(self, outputs, targets, extra): |
|
"""More memory-friendly matching""" |
|
bs, num_queries = outputs["pred_gmasks"].shape[:2] |
|
|
|
if bs == 0 or len(targets) == 0: |
|
return None |
|
|
|
indices = [] |
|
|
|
for b in range(bs): |
|
out_prob = outputs["pred_logits"][b] |
|
|
|
|
|
|
|
cost_class = -out_prob.softmax(dim=0) |
|
|
|
out_mask = outputs["pred_gmasks"][b] |
|
|
|
tgt_mask = targets[b]["grounding_masks"].to(out_mask) |
|
|
|
out_mask = out_mask[:, None] |
|
tgt_mask = tgt_mask[:, None] |
|
|
|
|
|
point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) |
|
|
|
tgt_mask = point_sample( |
|
tgt_mask, |
|
point_coords.repeat(tgt_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
out_mask = point_sample( |
|
out_mask, |
|
point_coords.repeat(out_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
with autocast(enabled=False): |
|
out_mask = out_mask.float() |
|
tgt_mask = tgt_mask.float() |
|
|
|
cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) |
|
|
|
|
|
cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) |
|
|
|
|
|
C = ( |
|
self.cost_mask * cost_mask |
|
+ self.cost_class * cost_class |
|
+ self.cost_dice * cost_dice |
|
) |
|
C = C.reshape(num_queries, -1).cpu() |
|
if C.isnan().any(): |
|
C[C.isnan()] = 1e6 |
|
warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") |
|
raise |
|
indices.append(linear_sum_assignment(C)) |
|
|
|
return [ |
|
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) |
|
for i, j in indices |
|
] |
|
|
|
@torch.no_grad() |
|
def spatial_forward(self, outputs, targets, extra): |
|
"""More memory-friendly matching""" |
|
bs, num_queries = outputs["pred_smasks"].shape[:2] |
|
|
|
if bs == 0 or len(targets) == 0: |
|
return None |
|
|
|
indices = [] |
|
|
|
for b in range(bs): |
|
out_mask = outputs["pred_smasks"][b] |
|
|
|
tgt_mask = targets[b]["gt_spatial_masks"].to(out_mask) |
|
nd,ns = outputs["pred_pos_logits"][b].shape |
|
index_masking = 1-torch.eye(ns, device=out_mask.device, dtype=tgt_mask.dtype).repeat_interleave(nd//ns,dim=0) |
|
neg_masking = torch.zeros((nd,ns), device=out_mask.device, dtype=tgt_mask.dtype) |
|
neg_masking.masked_fill_(index_masking.bool(), -float('inf')) |
|
pos_masking = torch.zeros((nd,ns), device=out_mask.device, dtype=tgt_mask.dtype) |
|
pos_masking.masked_fill_(index_masking.bool(), float('inf')) |
|
out_prob = (outputs["pred_pos_logits"][b]+neg_masking)[:,:len(tgt_mask)] |
|
|
|
|
|
|
|
cost_class = -out_prob.softmax(dim=0) |
|
|
|
out_mask = out_mask[:, None] |
|
tgt_mask = tgt_mask[:, None] |
|
|
|
|
|
point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) |
|
|
|
tgt_mask = point_sample( |
|
tgt_mask, |
|
point_coords.repeat(tgt_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
out_mask = point_sample( |
|
out_mask, |
|
point_coords.repeat(out_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
with autocast(enabled=False): |
|
out_mask = out_mask.float() |
|
tgt_mask = tgt_mask.float() |
|
|
|
cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) + pos_masking[:,:len(tgt_mask)] |
|
|
|
cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) + pos_masking[:,:len(tgt_mask)] |
|
|
|
|
|
C = ( |
|
self.spatial_cost_mask * cost_mask |
|
+ self.spatial_cost_class * cost_class |
|
+ self.spatial_cost_dice * cost_dice |
|
) |
|
C = C.reshape(num_queries, -1).cpu() |
|
if C.isnan().any(): |
|
C[C.isnan()] = 1e6 |
|
warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") |
|
raise |
|
indices.append(linear_sum_assignment(C)) |
|
|
|
return [ |
|
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) |
|
for i, j in indices |
|
] |
|
|
|
@torch.no_grad() |
|
def spatial_forward_pn(self, outputs, targets, extra): |
|
"""More memory-friendly matching""" |
|
bs, num_queries = outputs["pred_smasks"].shape[:2] |
|
|
|
if bs == 0 or len(targets) == 0: |
|
return None |
|
|
|
fp_mask = extra['false_positive_mask'] |
|
gt_mask = torch.stack([targets[b]["gt_spatial_masks"] for b in range(bs)]) |
|
|
|
indices = [] |
|
|
|
for b in range(bs): |
|
out_prob = outputs["pred_neg_logits"][b] |
|
|
|
|
|
|
|
cost_class = -out_prob.softmax(dim=0) |
|
|
|
out_mask = outputs["pred_smasks"][b] |
|
tgt_mask = fp_mask[b].to(out_mask) |
|
ign_mask = (gt_mask[b] | fp_mask[b]).to(out_mask) |
|
|
|
out_mask = out_mask[:, None] |
|
tgt_mask = tgt_mask[:, None] |
|
ign_mask = ign_mask[:, None] |
|
|
|
|
|
point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) |
|
|
|
|
|
tgt_mask = point_sample( |
|
tgt_mask, |
|
point_coords.repeat(tgt_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
out_mask = point_sample( |
|
out_mask, |
|
point_coords.repeat(out_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
ign_mask = point_sample( |
|
ign_mask, |
|
point_coords.repeat(ign_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
with autocast(enabled=False): |
|
out_mask = out_mask.float() |
|
tgt_mask = tgt_mask.float() |
|
ign_mask = ign_mask.float() |
|
|
|
|
|
cost_mask = batch_sigmoid_ce_loss_jit(out_mask*ign_mask, tgt_mask*ign_mask) |
|
|
|
|
|
cost_dice = batch_dice_loss_jit(out_mask*ign_mask, tgt_mask*ign_mask) |
|
|
|
|
|
C = ( |
|
self.spatial_cost_mask * cost_mask |
|
+ self.spatial_cost_class * cost_class |
|
+ self.spatial_cost_dice * cost_dice |
|
) |
|
C = C.reshape(num_queries, -1).cpu() |
|
if C.isnan().any(): |
|
C[C.isnan()] = 1e6 |
|
warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") |
|
raise |
|
indices.append(linear_sum_assignment(C)) |
|
|
|
return [ |
|
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) |
|
for i, j in indices |
|
] |
|
|
|
@torch.no_grad() |
|
def caption_forward_womask(self, outputs, targets, extra): |
|
"""More memory-friendly matching""" |
|
bs, _ = outputs["pred_logits"].shape[:2] |
|
|
|
if bs == 0 or len(targets) == 0: |
|
return None |
|
|
|
indices = [] |
|
t_emb = torch.cat([t['captions'] for t in targets]) |
|
v_emb = outputs['unmatched_pred_captions'] |
|
caption_target_count = np.cumsum([0] + [len(t['captions']) for t in targets]) |
|
|
|
|
|
for b in range(bs): |
|
v_emb[b] = v_emb[b] / (v_emb[b].norm(dim=-1, keepdim=True) + 1e-7) |
|
num_queries = len(v_emb[b]) |
|
out_prob = vl_similarity(v_emb[b][None,], t_emb, temperature=extra['temperature']).softmax(-1)[0] |
|
tgt_ids = [idx for idx in range(caption_target_count[b], caption_target_count[b+1])] |
|
|
|
|
|
|
|
|
|
cost_class = -out_prob[:, tgt_ids] |
|
|
|
|
|
C = (self.cost_class * cost_class) |
|
C = C.reshape(num_queries, -1).cpu() |
|
if C.isnan().any(): |
|
C[C.isnan()] = 1e6 |
|
warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") |
|
raise |
|
indices.append(linear_sum_assignment(C)) |
|
|
|
return [ |
|
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) |
|
for i, j in indices |
|
] |
|
|
|
@torch.no_grad() |
|
def caption_forward_wmask(self, outputs, targets, extra): |
|
"""More memory-friendly matching""" |
|
bs, _ = outputs["pred_logits"].shape[:2] |
|
|
|
if bs == 0 or len(targets) == 0: |
|
return None |
|
|
|
indices = [] |
|
t_emb = torch.cat([t['captions'] for t in targets]) |
|
v_emb = outputs['unmatched_pred_captions'] |
|
caption_target_count = np.cumsum([0] + [len(t['captions']) for t in targets]) |
|
|
|
|
|
for b in range(bs): |
|
v_emb[b] = v_emb[b] / (v_emb[b].norm(dim=-1, keepdim=True) + 1e-7) |
|
num_queries = len(v_emb[b]) |
|
|
|
out_prob = vl_similarity(v_emb[b][None,], t_emb, temperature=extra['temperature']).softmax(-1)[0] |
|
tgt_ids = [idx for idx in range(caption_target_count[b], caption_target_count[b+1])] |
|
|
|
|
|
|
|
|
|
cost_class = -out_prob[:, tgt_ids] |
|
|
|
out_mask = outputs["pred_masks"][b] |
|
|
|
tgt_mask = targets[b]["masks"].to(out_mask) |
|
|
|
out_mask = out_mask[:, None] |
|
tgt_mask = tgt_mask[:, None] |
|
|
|
point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device, dtype=tgt_mask.dtype) |
|
|
|
tgt_mask = point_sample( |
|
tgt_mask, |
|
point_coords.repeat(tgt_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
out_mask = point_sample( |
|
out_mask, |
|
point_coords.repeat(out_mask.shape[0], 1, 1), |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
with autocast(enabled=False): |
|
out_mask = out_mask.float() |
|
tgt_mask = tgt_mask.float() |
|
|
|
cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) |
|
|
|
|
|
cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) |
|
|
|
|
|
C = ( |
|
self.cost_mask * cost_mask |
|
+ self.cost_class * cost_class |
|
+ self.cost_dice * cost_dice |
|
) |
|
C = C.reshape(num_queries, -1).cpu() |
|
if C.isnan().any(): |
|
C[C.isnan()] = 1e6 |
|
warnings.warn("NAN in Cost Matrix!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") |
|
raise |
|
indices.append(linear_sum_assignment(C)) |
|
|
|
return [ |
|
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) |
|
for i, j in indices |
|
] |
|
|
|
@torch.no_grad() |
|
def forward(self, outputs, targets, mode='default', extra={}): |
|
"""Performs the matching |
|
|
|
Params: |
|
outputs: This is a dict that contains at least these entries: |
|
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits |
|
"pred_masks": Tensor of dim [batch_size, num_queries, H_pred, W_pred] with the predicted masks |
|
|
|
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: |
|
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth |
|
objects in the target) containing the class labels |
|
"masks": Tensor of dim [num_target_boxes, H_gt, W_gt] containing the target masks |
|
|
|
Returns: |
|
A list of size batch_size, containing tuples of (index_i, index_j) where: |
|
- index_i is the indices of the selected predictions (in order) |
|
- index_j is the indices of the corresponding selected targets (in order) |
|
For each batch element, it holds: |
|
len(index_i) = len(index_j) = min(num_queries, num_target_boxes) |
|
""" |
|
if mode == 'default': |
|
return self.memory_efficient_forward(outputs, targets) |
|
elif mode == 'grounding': |
|
return self.grounding_forward(outputs, targets, extra) |
|
elif mode == 'spatial': |
|
return self.spatial_forward(outputs, targets, extra) |
|
elif mode == 'spatial_pn': |
|
return self.spatial_forward_pn(outputs, targets, extra) |
|
elif mode == 'caption_womask': |
|
return self.caption_forward_womask(outputs, targets, extra) |
|
elif mode == 'caption_wmask': |
|
return self.caption_forward_wmask(outputs, targets, extra) |
|
else: |
|
assert False, "Mode {} is not supported.".format(mode) |
|
|
|
def __repr__(self, _repr_indent=4): |
|
head = "Matcher " + self.__class__.__name__ |
|
body = [ |
|
"cost_class: {}".format(self.cost_class), |
|
"cost_mask: {}".format(self.cost_mask), |
|
"cost_dice: {}".format(self.cost_dice), |
|
] |
|
lines = [head] + [" " * _repr_indent + line for line in body] |
|
return "\n".join(lines) |
|
|