|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict |
|
|
|
from torch import nn |
|
|
|
from detectron2.layers import ShapeSpec |
|
|
|
from .build import register_body |
|
from ..vision.encoder import build_encoder |
|
from ..interface import build_decoder |
|
from ..utils import configurable |
|
|
|
|
|
class XdecoderHead(nn.Module): |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
input_shape: Dict[str, ShapeSpec], |
|
*, |
|
num_classes: int, |
|
pixel_decoder: nn.Module, |
|
loss_weight: float = 1.0, |
|
ignore_value: int = -1, |
|
|
|
transformer_predictor: nn.Module, |
|
transformer_in_feature: str, |
|
binary_classes: bool, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
Args: |
|
input_shape: shapes (channels and stride) of the input features |
|
num_classes: number of classes to predict |
|
pixel_decoder: the pixel decoder module |
|
loss_weight: loss weight |
|
ignore_value: category id to be ignored during training. |
|
transformer_predictor: the transformer decoder that makes prediction |
|
transformer_in_feature: input feature name to the transformer_predictor |
|
""" |
|
super().__init__() |
|
|
|
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) |
|
self.in_features = [k for k, v in input_shape] |
|
feature_strides = [v.stride for k, v in input_shape] |
|
feature_channels = [v.channels for k, v in input_shape] |
|
|
|
self.ignore_value = ignore_value |
|
self.common_stride = 4 |
|
self.loss_weight = loss_weight |
|
|
|
self.pixel_decoder = pixel_decoder |
|
self.predictor = transformer_predictor |
|
self.transformer_in_feature = transformer_in_feature |
|
|
|
self.num_classes = num_classes |
|
|
|
if binary_classes: |
|
self.num_classes = 1 |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec], lang_encoder: nn.Module, extra: dict): |
|
|
|
in_features_type = cfg['MODEL']['DECODER']['TRANSFORMER_IN_FEATURE'] |
|
enc_cfg = cfg['MODEL']['ENCODER'] |
|
dec_cfg = cfg['MODEL']['DECODER'] |
|
|
|
|
|
if in_features_type == "transformer_encoder": |
|
transformer_predictor_in_channels = enc_cfg['CONVS_DIM'] |
|
elif in_features_type == "pixel_embedding": |
|
transformer_predictor_in_channels = enc_cfg['MASK_DIM'] |
|
elif in_features_type == "multi_scale_pixel_decoder": |
|
transformer_predictor_in_channels = enc_cfg['CONVS_DIM'] |
|
else: |
|
transformer_predictor_in_channels = input_shape[dec_cfg['TRANSFORMER_IN_FEATURE']].channels |
|
|
|
return { |
|
"input_shape": { |
|
k: v for k, v in input_shape.items() if k in enc_cfg['IN_FEATURES'] |
|
}, |
|
"ignore_value": enc_cfg['IGNORE_VALUE'], |
|
"num_classes": enc_cfg.get('NUM_CLASSES', None), |
|
"pixel_decoder": build_encoder(cfg, input_shape), |
|
"loss_weight": enc_cfg['LOSS_WEIGHT'], |
|
"transformer_in_feature": dec_cfg['TRANSFORMER_IN_FEATURE'], |
|
"transformer_predictor": build_decoder( |
|
cfg, |
|
transformer_predictor_in_channels, |
|
lang_encoder, |
|
mask_classification=True, |
|
extra=extra, |
|
), |
|
"binary_classes": enc_cfg['BINARY_CLASSES'] |
|
} |
|
|
|
def forward(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}): |
|
return self.layers(features, mask, target_queries, target_vlp, task, extra) |
|
|
|
def layers(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}): |
|
mask_features, transformer_encoder_features, multi_scale_features = self.pixel_decoder.forward_features(features) |
|
|
|
if self.transformer_in_feature == "multi_scale_pixel_decoder": |
|
predictions = self.predictor(multi_scale_features, mask_features, mask, target_queries, target_vlp, task, extra) |
|
else: |
|
if self.transformer_in_feature == "transformer_encoder": |
|
assert ( |
|
transformer_encoder_features is not None |
|
), "Please use the TransformerEncoderPixelDecoder." |
|
predictions = self.predictor(transformer_encoder_features, mask_features, mask) |
|
elif self.transformer_in_feature == "pixel_embedding": |
|
predictions = self.predictor(mask_features, mask_features, mask) |
|
else: |
|
predictions = self.predictor(features[self.transformer_in_feature], mask_features, mask) |
|
return predictions |
|
|
|
|
|
@register_body |
|
def get_xdecoder_head(cfg, input_shape, lang_encoder, extra): |
|
return XdecoderHead(cfg, input_shape, lang_encoder, extra) |