|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
from typing import Tuple |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from kornia.contrib import distance_transform |
|
|
|
from detectron2.structures import Boxes, ImageList, Instances, BitMasks |
|
from detectron2.utils.memory import retry_if_cuda_oom |
|
from detectron2.data import MetadataCatalog |
|
|
|
from .build import register_model |
|
|
|
from ..utils import configurable, get_class_names, get_iou |
|
from ..vision.backbone import build_backbone, Backbone |
|
from ..body import build_xdecoder_head |
|
from ..modules import sem_seg_postprocess, SetCriterion, HungarianMatcher, bbox_postprocess |
|
from ..language import build_language_encoder |
|
from ..language.loss import vl_similarity |
|
from utilities.prompt_engineering import prompt_engineering |
|
from utilities.constants import COCO_PANOPTIC_CLASSES |
|
|
|
|
|
class GeneralizedSEEM(nn.Module): |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
*, |
|
backbone: Backbone, |
|
sem_seg_head: nn.Module, |
|
criterion: nn.Module, |
|
losses: dict, |
|
num_queries: int, |
|
object_mask_threshold: float, |
|
overlap_threshold: float, |
|
metadata, |
|
task_switch: dict, |
|
phrase_prob: float, |
|
size_divisibility: int, |
|
sem_seg_postprocess_before_inference: bool, |
|
pixel_mean: Tuple[float], |
|
pixel_std: Tuple[float], |
|
|
|
semantic_on: bool, |
|
panoptic_on: bool, |
|
instance_on: bool, |
|
test_topk_per_image: int, |
|
train_dataset_name: str, |
|
interactive_mode: str, |
|
interactive_iter: str, |
|
dilation_kernel: torch.Tensor, |
|
train_max_iter: int, |
|
): |
|
""" |
|
Args: |
|
backbone: a backbone module, must follow detectron2's backbone interface |
|
sem_seg_head: a module that predicts semantic segmentation from backbone features |
|
criterion: a module that defines the loss |
|
num_queries: int, number of queries |
|
object_mask_threshold: float, threshold to filter query based on classification score |
|
for panoptic segmentation inference |
|
overlap_threshold: overlap threshold used in general inference for panoptic segmentation |
|
metadata: dataset meta, get `thing` and `stuff` category names for panoptic |
|
segmentation inference |
|
size_divisibility: Some backbones require the input height and width to be divisible by a |
|
specific integer. We can use this to override such requirement. |
|
sem_seg_postprocess_before_inference: whether to resize the prediction back |
|
to original input size before semantic segmentation inference or after. |
|
For high-resolution dataset like Mapillary, resizing predictions before |
|
inference will cause OOM error. |
|
pixel_mean, pixel_std: list or tuple with #channels element, representing |
|
the per-channel mean and std to be used to normalize the input image |
|
semantic_on: bool, whether to output semantic segmentation prediction |
|
instance_on: bool, whether to output instance segmentation prediction |
|
panoptic_on: bool, whether to output panoptic segmentation prediction |
|
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image |
|
""" |
|
super().__init__() |
|
self.backbone = backbone |
|
self.sem_seg_head = sem_seg_head |
|
self.criterion = criterion |
|
self.losses = losses |
|
self.num_queries = num_queries |
|
self.overlap_threshold = overlap_threshold |
|
self.object_mask_threshold = object_mask_threshold |
|
self.metadata = metadata |
|
if size_divisibility < 0: |
|
|
|
size_divisibility = self.backbone.size_divisibility |
|
self.size_divisibility = size_divisibility |
|
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference |
|
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) |
|
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) |
|
|
|
|
|
self.semantic_on = semantic_on |
|
self.instance_on = instance_on |
|
self.panoptic_on = panoptic_on |
|
|
|
|
|
self.task_switch = task_switch |
|
self.phrase_prob = phrase_prob |
|
self.train_max_iter = train_max_iter |
|
|
|
self.test_topk_per_image = test_topk_per_image |
|
self.train_class_names = get_class_names(train_dataset_name) |
|
self.interactive_mode = interactive_mode |
|
self.interactive_iter = interactive_iter |
|
|
|
if not self.semantic_on: |
|
assert self.sem_seg_postprocess_before_inference |
|
|
|
self.register_buffer("dilation_kernel", dilation_kernel) |
|
|
|
@classmethod |
|
def from_config(cls, cfg): |
|
enc_cfg = cfg['MODEL']['ENCODER'] |
|
dec_cfg = cfg['MODEL']['DECODER'] |
|
|
|
|
|
deep_supervision = dec_cfg['DEEP_SUPERVISION'] |
|
no_object_weight = dec_cfg['NO_OBJECT_WEIGHT'] |
|
|
|
|
|
loss_weights = {'mask': {'ce': dec_cfg['CLASS_WEIGHT'], 'dice': dec_cfg['DICE_WEIGHT'], 'bce': dec_cfg['MASK_WEIGHT']}, |
|
'bbox': {'l1': dec_cfg['BBOX_WEIGHT'], 'giou': dec_cfg['GIOU_WEIGHT']}, |
|
'spatial': {'ce': dec_cfg['SCLASS_WEIGHT'], 'dice': dec_cfg['SDICE_WEIGHT'], 'bce': dec_cfg['SMASK_WEIGHT']}, |
|
'grounding': {'ce': dec_cfg['GCLASS_WEIGHT'], 'dice': dec_cfg['GDICE_WEIGHT'], 'bce': dec_cfg['GMASK_WEIGHT']}, |
|
'openimage': {'ce': dec_cfg['OCLASS_WEIGHT'], 'dice': dec_cfg['ODICE_WEIGHT'], 'bce': dec_cfg['OMASK_WEIGHT']}} |
|
|
|
openimage_switch = {'grounding': dec_cfg['OPENIMAGE']['GROUNDING'].get('ENABLED', False), |
|
'mask': dec_cfg['OPENIMAGE'].get('ENABLED', False)} |
|
|
|
task_switch = {'bbox': dec_cfg.get('DETECTION', False), |
|
'mask': dec_cfg['MASK'].get('ENABLED', True), |
|
'spatial': dec_cfg['SPATIAL'].get('ENABLED', False), |
|
'grounding': dec_cfg['GROUNDING'].get('ENABLED', False), |
|
'openimage': openimage_switch} |
|
|
|
top_x_layers = {'mask': dec_cfg.get('TOP_MASK_LAYERS', 10), |
|
'grounding': dec_cfg.get('TOP_GROUNDING_LAYERS', 10), |
|
'openimage': dec_cfg.get('TOP_OPENIMAGE_LAYERS', 10), |
|
'spatial': dec_cfg.get('TOP_SPATIAL_LAYERS', 10)} |
|
|
|
spatial_cost = {"class_weight": dec_cfg['COST_SPATIAL']['CLASS_WEIGHT'], |
|
"mask_weight": dec_cfg['COST_SPATIAL']['MASK_WEIGHT'], |
|
"dice_weight": dec_cfg['COST_SPATIAL']['DICE_WEIGHT']} |
|
|
|
extra = {'task_switch': task_switch} |
|
backbone = build_backbone(cfg) |
|
lang_encoder = build_language_encoder(cfg) |
|
sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra=extra) |
|
|
|
|
|
matcher = HungarianMatcher( |
|
cost_class=loss_weights['mask']['ce'], |
|
cost_mask=loss_weights['mask']['bce'], |
|
cost_dice=loss_weights['mask']['dice'], |
|
num_points=dec_cfg['TRAIN_NUM_POINTS'], |
|
spatial_cost=spatial_cost, |
|
) |
|
|
|
|
|
losses = {'seg': [], 'openimage': []} |
|
if task_switch['mask']: |
|
losses['seg'] += ["labels", "masks"] |
|
if task_switch['spatial']: |
|
losses['seg'] += ["spatials"] |
|
if task_switch['grounding']: |
|
losses['seg'] += ["groundings"] |
|
if task_switch['openimage']: |
|
losses['openimage'] += ["labels_openimage", "masks"] |
|
if task_switch['openimage']['grounding']: |
|
losses['openimage'] += ["groundings"] |
|
|
|
weight_dict = {} |
|
for key, turn_on in task_switch.items(): |
|
if turn_on: |
|
if isinstance(loss_weights[key], dict): |
|
|
|
for key_, weight in loss_weights[key].items(): |
|
weight_dict["loss_{}_{}_0".format(key, key_)] = weight |
|
else: |
|
weight_dict["loss_{}_0".format(key)] = loss_weights[key] |
|
|
|
|
|
if deep_supervision: |
|
dec_layers = dec_cfg['DEC_LAYERS'] |
|
aux_weight_dict = {} |
|
for i in range(dec_layers - 1): |
|
for k, v in weight_dict.items(): |
|
if (i+1) > (top_x_layers[k.split('_')[1]] - 1): |
|
continue |
|
aux_weight_dict.update({k.replace('_0', f"_{i+1}"): v}) |
|
weight_dict.update(aux_weight_dict) |
|
|
|
grd_weight = {'text': dec_cfg['GROUNDING']['TEXT_WEIGHT'], 'class': dec_cfg['GROUNDING']['CLASS_WEIGHT']} |
|
|
|
criterion = SetCriterion( |
|
sem_seg_head.num_classes, |
|
matcher=matcher, |
|
weight_dict=weight_dict, |
|
top_x_layers=top_x_layers, |
|
eos_coef=no_object_weight, |
|
losses=[], |
|
num_points=dec_cfg['TRAIN_NUM_POINTS'], |
|
oversample_ratio=dec_cfg['OVERSAMPLE_RATIO'], |
|
importance_sample_ratio=dec_cfg['IMPORTANCE_SAMPLE_RATIO'], |
|
grounding_weight=grd_weight, |
|
) |
|
|
|
|
|
train_dataset_name = cfg['DATASETS']['TRAIN'][0] |
|
train_max_iter = dec_cfg['SPATIAL'].get('MAX_ITER', 3) |
|
phrase_prob = dec_cfg['CAPTION'].get('PHRASE_PROB', 0.5) |
|
interactive_mode = cfg['STROKE_SAMPLER']['EVAL']['MODE'] |
|
interactive_iter = cfg['STROKE_SAMPLER']['EVAL']['MAX_ITER'] |
|
|
|
dilation = 3 |
|
dilation_kernel = torch.ones((1, 1, dilation, dilation), device=torch.cuda.current_device()) |
|
|
|
return { |
|
"backbone": backbone, |
|
"sem_seg_head": sem_seg_head, |
|
"criterion": criterion, |
|
"losses": losses, |
|
"num_queries": dec_cfg['NUM_OBJECT_QUERIES'], |
|
"object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'], |
|
"overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'], |
|
"metadata": MetadataCatalog.get(cfg['DATASETS']['TRAIN'][0]), |
|
"size_divisibility": dec_cfg['SIZE_DIVISIBILITY'], |
|
"sem_seg_postprocess_before_inference": ( |
|
dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE'] |
|
or dec_cfg['TEST']['PANOPTIC_ON'] |
|
or dec_cfg['TEST']['INSTANCE_ON'] |
|
), |
|
"pixel_mean": cfg['INPUT']['PIXEL_MEAN'], |
|
"pixel_std": cfg['INPUT']['PIXEL_STD'], |
|
"task_switch": task_switch, |
|
"phrase_prob": phrase_prob, |
|
|
|
"semantic_on": dec_cfg['TEST']['SEMANTIC_ON'], |
|
"instance_on": dec_cfg['TEST']['INSTANCE_ON'], |
|
"panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'], |
|
"test_topk_per_image": cfg['TEST']['DETECTIONS_PER_IMAGE'], |
|
"train_dataset_name": train_dataset_name, |
|
"interactive_mode": interactive_mode, |
|
"interactive_iter": interactive_iter, |
|
"dilation_kernel": dilation_kernel, |
|
"train_max_iter": train_max_iter, |
|
} |
|
|
|
@property |
|
def device(self): |
|
return self.pixel_mean.device |
|
|
|
def forward(self, batched_inputs, mode='default'): |
|
""" |
|
Args: |
|
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. |
|
Each item in the list contains the inputs for one image. |
|
For now, each item in the list is a dict that contains: |
|
* "image": Tensor, image in (C, H, W) format. |
|
* "instances": per-region ground truth |
|
* Other information that's included in the original dicts, such as: |
|
"height", "width" (int): the output resolution of the model (may be different |
|
from input resolution), used in inference. |
|
Returns: |
|
list[dict]: |
|
each dict has the results for one image. The dict contains the following keys: |
|
|
|
* "sem_seg": |
|
A Tensor that represents the |
|
per-pixel segmentation prediced by the head. |
|
The prediction has shape KxHxW that represents the logits of |
|
each class for each pixel. |
|
* "panoptic_seg": |
|
A tuple that represent panoptic output |
|
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. |
|
segments_info (list[dict]): Describe each segment in `panoptic_seg`. |
|
Each dict contains keys "id", "category_id", "isthing". |
|
""" |
|
if self.training: |
|
losses = {} |
|
if self.task_switch['mask'] or self.task_switch['grounding'] or self.task_switch['spatial']: |
|
losses_seg = self.forward_seg(batched_inputs) |
|
losses.update(losses_seg) |
|
if self.task_switch['openimage'] and self.task_switch['openimage']['mask']: |
|
losses_openimage = self.forward_openimage(batched_inputs['openimage']) |
|
losses_openimage = {key.replace('mask', 'openimage'):value for key, value in losses_openimage.items()} |
|
losses_openimage = {key.replace('grounding', 'grounding_openimage'):value for key, value in losses_openimage.items()} |
|
losses.update(losses_openimage) |
|
for k in list(losses.keys()): |
|
if k in self.criterion.weight_dict: |
|
losses[k] *= self.criterion.weight_dict[k] |
|
else: |
|
losses.pop(k) |
|
return losses |
|
else: |
|
if mode == 'interactive': |
|
return self.evaluate_interactive(batched_inputs) |
|
elif mode == 'interactive_grounding': |
|
return self.evaluate_interactive_grounding(batched_inputs) |
|
elif mode == 'grounding_spatial': |
|
return self.evaluate_grounding_sptial(batched_inputs, mode) |
|
elif mode in ['grounding_phrasecut', 'grounding_refcoco']: |
|
return self.evaluate_grounding(batched_inputs, mode) |
|
else: |
|
return self.evaluate(batched_inputs) |
|
|
|
|
|
def forward_seg(self, batched_inputs): |
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors(images, self.size_divisibility) |
|
|
|
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(self.train_class_names, is_eval=False) |
|
|
|
extra = {} |
|
|
|
if "instances" in batched_inputs[0]: |
|
|
|
targets = self.prepare_targets(batched_inputs, images) |
|
|
|
if self.task_switch['grounding']: |
|
grounding_tokens = [x['grounding_query_embs'] for x in targets] |
|
grounding_tokens = nn.utils.rnn.pad_sequence(grounding_tokens, padding_value=-1) |
|
non_zero_query_mask = (grounding_tokens.sum(dim=-1) == -grounding_tokens.shape[-1]) |
|
grounding_tokens[non_zero_query_mask] = 0 |
|
|
|
extra['grounding_tokens'] = grounding_tokens |
|
extra['grounding_nonzero_mask'] = non_zero_query_mask.t() |
|
|
|
if self.task_switch['spatial']: |
|
pos_masks = [x['spatial_query']['rand_shape'].to(self.device) for x in batched_inputs] |
|
neg_masks = [(x['spatial_query']['rand_shape'].to(self.device) & False) for x in batched_inputs] |
|
fp_masks = torch.stack([(x['spatial_query']['rand_shape'].to(self.device) & False) for x in batched_inputs]) |
|
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks, 'false_positive_mask': fp_masks}) |
|
|
|
features = self.backbone(images.tensor) |
|
mask_features, _, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) |
|
|
|
|
|
if self.task_switch['spatial']: |
|
with torch.no_grad(): |
|
|
|
rand_iter_num = random.randint(0, self.train_max_iter) |
|
for i in range(rand_iter_num): |
|
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, extra=extra, task='spatial') |
|
extra.update(outputs) |
|
extra.update(self.prepare_next_spaital_mask(extra, batched_inputs)) |
|
|
|
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, extra=extra, task='seg') |
|
|
|
extra = {'lang_logit': self.sem_seg_head.predictor.lang_encoder.logit_scale, |
|
'class_embeddings': getattr(self.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('default')), |
|
'false_positive_mask': extra['false_positive_mask']} |
|
|
|
self.criterion.losses = self.losses['seg'] |
|
losses = self.criterion(outputs, targets, extra) |
|
|
|
del outputs |
|
return losses |
|
|
|
def evaluate(self, batched_inputs): |
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
|
|
images = ImageList.from_tensors(images, self.size_divisibility) |
|
img_bs = images.tensor.shape[0] |
|
|
|
targets = targets_grounding = queries_grounding = None |
|
features = self.backbone(images.tensor) |
|
outputs = self.sem_seg_head(features, target_queries=queries_grounding) |
|
|
|
mask_cls_results = outputs["pred_logits"] |
|
mask_pred_results = outputs["pred_masks"] |
|
box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))] |
|
|
|
|
|
mask_pred_results = F.interpolate( |
|
mask_pred_results, |
|
size=(images.tensor.shape[-2], images.tensor.shape[-1]), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
input_size = mask_pred_results.shape[-2:] |
|
del outputs |
|
|
|
processed_results = [] |
|
for mask_cls_result, mask_pred_result, box_pred_result, input_per_image, image_size in zip( |
|
mask_cls_results, mask_pred_results, box_pred_results, batched_inputs, images.image_sizes |
|
): |
|
height = input_per_image.get("height", image_size[0]) |
|
width = input_per_image.get("width", image_size[1]) |
|
processed_results.append({}) |
|
|
|
if self.sem_seg_postprocess_before_inference: |
|
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( |
|
mask_pred_result, image_size, height, width |
|
) |
|
mask_cls_result = mask_cls_result.to(mask_pred_result) |
|
|
|
|
|
if self.semantic_on: |
|
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) |
|
if not self.sem_seg_postprocess_before_inference: |
|
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) |
|
processed_results[-1]["sem_seg"] = r |
|
|
|
|
|
if self.panoptic_on: |
|
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) |
|
processed_results[-1]["panoptic_seg"] = panoptic_r |
|
|
|
|
|
if self.instance_on: |
|
if self.task_switch['bbox']: |
|
box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width) |
|
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result) |
|
processed_results[-1]["instances"] = instance_r |
|
|
|
return processed_results |
|
|
|
def evaluate_interactive(self, batched_inputs): |
|
assert self.task_switch['spatial'] |
|
assert 'spatial_query' in batched_inputs[0] |
|
assert len(batched_inputs) == 1, "only support batch size equal to 1" |
|
|
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors(images, self.size_divisibility) |
|
img_bs = images.tensor.shape[0] |
|
|
|
targets = targets_grounding = queries_grounding = None |
|
extra = {} |
|
|
|
features = self.backbone(images.tensor) |
|
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) |
|
|
|
image_sizes = [x["image"].shape[-2:] for x in batched_inputs] |
|
nm = len(batched_inputs[0]['spatial_query']['rand_shape']) |
|
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] |
|
mask_features = mask_features.repeat(nm,1,1,1) |
|
|
|
all_batch_shape_iou = [] |
|
pred_smask_pointer = None |
|
prev_smask_pointer = None |
|
pred_smask_all = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
query_index = self.sem_seg_head.predictor.query_index |
|
if self.interactive_mode in ['best', 'best_random']: |
|
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) |
|
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0) |
|
|
|
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) |
|
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) |
|
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks}) |
|
elif self.interactive_mode == 'random': |
|
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==1).unbind(0) |
|
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor |
|
|
|
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==-1).unbind(0) |
|
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor |
|
extra.update({'spatial_query_pos_mask': pos_masks[:,0:1].unbind(), 'spatial_query_neg_mask': neg_masks[:,0:1].unbind()}) |
|
else: |
|
assert False, "invalid interactive mode" |
|
|
|
for i in range(self.interactive_iter): |
|
|
|
|
|
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial') |
|
extra.update(outputs) |
|
pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bilinear') |
|
|
|
|
|
s = image_sizes[0] |
|
b = batched_inputs[0] |
|
pred_smask_all = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bilinear')[:,0].sigmoid() > 0.5 |
|
gt_smask = b['gt_masks_orisize'] |
|
ious = get_iou(gt_smask, pred_smask_all) |
|
all_batch_shape_iou += [ious] |
|
if (ious > 0.9).sum() == len(ious): |
|
all_batch_shape_iou += [ious for j in range(self.interactive_iter-i-1)] |
|
break |
|
if self.interactive_mode in ['best', 'best_random']: |
|
extra.update(self.prepare_next_spaital_mask(extra, batched_inputs, mode=self.interactive_mode)) |
|
elif self.interactive_mode == 'random': |
|
extra.update({'spatial_query_pos_mask': pos_masks[:,i+1:i+2].unbind(), 'spatial_query_neg_mask': neg_masks[:,i+1:i+2].unbind()}) |
|
else: |
|
assert False, "invalid interactive mode" |
|
all_batch_shape_iou = torch.stack(all_batch_shape_iou) |
|
processed_results = [{"mask_iou": all_batch_shape_iou[:,i]} for i in range(len(all_batch_shape_iou[0]))] |
|
|
|
return processed_results |
|
|
|
def evaluate_interactive_single(self, batched_inputs, extra={}): |
|
assert self.task_switch['spatial'] |
|
assert 'spatial_query' in batched_inputs[0] |
|
assert len(batched_inputs) == 1, "only support batch size equal to 1" |
|
|
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors(images, self.size_divisibility) |
|
img_bs = images.tensor.shape[0] |
|
|
|
targets = targets_grounding = queries_grounding = None |
|
|
|
features = self.backbone(images.tensor) |
|
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) |
|
|
|
image_sizes = [x["image"].shape[-2:] for x in batched_inputs] |
|
nm = len(batched_inputs[0]['spatial_query']['rand_shape']) |
|
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] |
|
mask_features = mask_features.repeat(nm,1,1,1) |
|
|
|
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial') |
|
pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bicubic') |
|
|
|
s = image_sizes[0] |
|
b = batched_inputs[0] |
|
pred_smask_ori = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bicubic')[:,0].sigmoid() > 0.5 |
|
pred_smask_batch = pred_smask[:,:,:s[0],:s[1]].sigmoid() > 0.5 |
|
ious = [] |
|
if 'gt_masks_orisize' in b: |
|
gt_smask = b['gt_masks_orisize'].to(pred_smask_ori.device) |
|
ious = get_iou(gt_smask, pred_smask_ori) |
|
processed_results = [{"mask_iou": ious, 'pred_mask_ori': pred_smask_ori, 'pred_mask_batch': pred_smask_batch}] |
|
return processed_results |
|
|
|
def evaluate_interactive_grounding(self, batched_inputs): |
|
assert self.task_switch['spatial'] |
|
assert 'spatial_query' in batched_inputs[0] |
|
assert len(batched_inputs) == 1, "only support batch size equal to 1" |
|
|
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors(images, self.size_divisibility) |
|
img_bs = images.tensor.shape[0] |
|
|
|
targets = targets_grounding = queries_grounding = None |
|
extra = {} |
|
|
|
features = self.backbone(images.tensor) |
|
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) |
|
|
|
image_sizes = [x["image"].shape[-2:] for x in batched_inputs] |
|
nm = len(batched_inputs[0]['spatial_query']['rand_shape']) |
|
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] |
|
mask_features = mask_features.repeat(nm,1,1,1) |
|
|
|
all_batch_shape_iou = [] |
|
pred_smask_pointer = None |
|
prev_smask_pointer = None |
|
pred_smask_all = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
query_index = self.sem_seg_head.predictor.query_index |
|
if self.interactive_mode in ['best', 'best_random']: |
|
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) |
|
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0) |
|
|
|
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) |
|
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) |
|
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks}) |
|
elif self.interactive_mode == 'random': |
|
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==1).unbind(0) |
|
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor |
|
|
|
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==-1).unbind(0) |
|
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor |
|
extra.update({'spatial_query_pos_mask': pos_masks[:,0:1].unbind(), 'spatial_query_neg_mask': neg_masks[:,0:1].unbind()}) |
|
else: |
|
assert False, "invalid interactive mode" |
|
|
|
grd_texts = batched_inputs[0]['classes'] |
|
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) |
|
token_emb = gtext['token_emb'] |
|
tokens = gtext['tokens'] |
|
query_emb = nn.utils.rnn.pad_sequence([_token_emb[_tokens.bool()] for _token_emb, _tokens in zip(token_emb, tokens['attention_mask'])], padding_value=-1) |
|
non_zero_query_mask = (query_emb.sum(dim=-1) < 0) |
|
|
|
extra['grounding_tokens'] = query_emb |
|
extra['grounding_nonzero_mask'] = non_zero_query_mask.t() |
|
|
|
for i in range(self.interactive_iter): |
|
|
|
|
|
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial') |
|
extra.update(outputs) |
|
pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bilinear') |
|
|
|
|
|
s = image_sizes[0] |
|
b = batched_inputs[0] |
|
pred_smask_all = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bilinear')[:,0].sigmoid() > 0.5 |
|
gt_smask = b['gt_masks_orisize'] |
|
ious = get_iou(gt_smask, pred_smask_all) |
|
all_batch_shape_iou += [ious] |
|
if (ious > 0.9).sum() == len(ious): |
|
all_batch_shape_iou += [ious for j in range(self.interactive_iter-i-1)] |
|
break |
|
if self.interactive_mode in ['best', 'best_random']: |
|
extra.update(self.prepare_next_spaital_mask(extra, batched_inputs, mode=self.interactive_mode)) |
|
elif self.interactive_mode == 'random': |
|
extra.update({'spatial_query_pos_mask': pos_masks[:,i+1:i+2].unbind(), 'spatial_query_neg_mask': neg_masks[:,i+1:i+2].unbind()}) |
|
else: |
|
assert False, "invalid interactive mode" |
|
all_batch_shape_iou = torch.stack(all_batch_shape_iou) |
|
processed_results = [{"mask_iou": all_batch_shape_iou[:,i]} for i in range(len(all_batch_shape_iou[0]))] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return processed_results |
|
|
|
def evaluate_referring_image(self, batched_inputs, extra={}): |
|
assert self.task_switch['spatial'] |
|
assert len(batched_inputs) == 1, "only support batch size equal to 1" |
|
assert self.interactive_mode == 'best' |
|
|
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors(images, self.size_divisibility) |
|
img_bs = images.tensor.shape[0] |
|
|
|
targets = targets_grounding = queries_grounding = None |
|
features = self.backbone(images.tensor) |
|
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) |
|
|
|
if 'spatial_query' in batched_inputs[0]: |
|
image_sizes = [x["image"].shape[-2:] for x in batched_inputs] |
|
nm = len(batched_inputs[0]['spatial_query']['rand_shape']) |
|
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] |
|
mask_features = mask_features.repeat(nm,1,1,1) |
|
|
|
query_index = self.sem_seg_head.predictor.query_index |
|
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) |
|
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0) |
|
|
|
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) |
|
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) |
|
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks}) |
|
|
|
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='refimg') |
|
return outputs, images.tensor.shape |
|
|
|
def evaluate_grounding(self, batched_inputs, mode): |
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors(images, self.size_divisibility) |
|
assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" |
|
|
|
extra = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask_pred_results = [] |
|
for idx, batch_per_image in enumerate(batched_inputs): |
|
grd_texts = batch_per_image['groundings']['texts'] |
|
grd_texts = [x[0] for x in grd_texts] |
|
|
|
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) |
|
token_emb = gtext['token_emb'] |
|
tokens = gtext['tokens'] |
|
query_emb = token_emb[tokens['attention_mask'].bool()] |
|
non_zero_query_mask = torch.zeros(query_emb[:,None].shape[:-1], dtype=torch.bool, device=query_emb.device) |
|
|
|
extra['grounding_tokens'] = query_emb[:,None] |
|
extra['grounding_nonzero_mask'] = non_zero_query_mask.t() |
|
|
|
features = self.backbone(images.tensor) |
|
outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') |
|
|
|
pred_gmasks = outputs['pred_gmasks'][idx] |
|
v_emb = outputs['pred_gtexts'][idx] |
|
t_emb = gtext['class_emb'] |
|
|
|
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) |
|
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) |
|
|
|
temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale |
|
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) |
|
|
|
matched_id = out_prob.max(0)[1] |
|
mask_pred_results += [pred_gmasks[matched_id,:,:]] |
|
|
|
for i in range(len(mask_pred_results)): |
|
|
|
mask_pred_results[i] = F.interpolate( |
|
mask_pred_results[i][None,], |
|
size=(images.tensor.shape[-2], images.tensor.shape[-1]), |
|
mode="bilinear", |
|
align_corners=False, |
|
)[0] |
|
|
|
processed_results = [] |
|
for mask_pred_result, input_per_image, image_size in zip( |
|
mask_pred_results, batched_inputs, images.image_sizes |
|
): |
|
height = input_per_image.get("height", image_size[0]) |
|
width = input_per_image.get("width", image_size[1]) |
|
processed_results.append({}) |
|
|
|
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( |
|
mask_pred_result, image_size, height, width |
|
) |
|
processed_results[-1]['grounding_mask'] = mask_pred_result |
|
|
|
|
|
|
|
|
|
|
|
|
|
return processed_results |
|
|
|
def evaluate_grounding_sptial(self, batched_inputs, mode): |
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors(images, self.size_divisibility) |
|
assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" |
|
|
|
extra = {} |
|
dilation = 3 |
|
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) |
|
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor |
|
pos_masks = (F.conv2d(pos_masks.float(), self.dilation_kernel, padding=dilation//2) > 0).unbind(0) |
|
|
|
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) |
|
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) |
|
|
|
mask_pred_results = [] |
|
for idx, batch_per_image in enumerate(batched_inputs): |
|
grd_texts = batch_per_image['groundings']['texts'] |
|
grd_masks = [] |
|
for idx2, anno_text in enumerate(grd_texts): |
|
extra.update({'spatial_query_pos_mask': [pos_masks[idx2]], 'spatial_query_neg_mask': [neg_masks[idx2]]}) |
|
|
|
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False) |
|
token_emb = gtext['token_emb'] |
|
tokens = gtext['tokens'] |
|
|
|
grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]] |
|
non_zero_query_mask = torch.zeros(grd_emb[:,None].shape[:-1], dtype=torch.bool, device=grd_emb.device) |
|
extra['grounding_tokens'] = grd_emb[:,None] |
|
extra['grounding_nonzero_mask'] = non_zero_query_mask.t() |
|
|
|
assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" |
|
features = self.backbone(images.tensor) |
|
outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') |
|
|
|
pred_gmasks = outputs['pred_gmasks'][idx] |
|
v_emb = outputs['pred_gtexts'][idx] |
|
t_emb = gtext['class_emb'] |
|
|
|
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) |
|
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) |
|
|
|
temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale |
|
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) |
|
|
|
matched_id = out_prob.max(0)[1] |
|
grd_masks += [pred_gmasks[matched_id,:,:]] |
|
|
|
|
|
mask_pred_results += [torch.cat(grd_masks)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(len(mask_pred_results)): |
|
|
|
mask_pred_results[i] = F.interpolate( |
|
mask_pred_results[i][None,], |
|
size=(images.tensor.shape[-2], images.tensor.shape[-1]), |
|
mode="bilinear", |
|
align_corners=False, |
|
)[0] |
|
|
|
processed_results = [] |
|
for mask_pred_result, input_per_image, image_size in zip( |
|
mask_pred_results, batched_inputs, images.image_sizes |
|
): |
|
height = input_per_image.get("height", image_size[0]) |
|
width = input_per_image.get("width", image_size[1]) |
|
processed_results.append({}) |
|
|
|
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( |
|
mask_pred_result, image_size, height, width |
|
) |
|
processed_results[-1]['grounding_mask'] = mask_pred_result |
|
|
|
return processed_results |
|
|
|
def prepare_targets(self, batched_inputs, images): |
|
h_pad, w_pad = images.tensor.shape[-2:] |
|
new_targets = [] |
|
for idx, batch_per_image in enumerate(batched_inputs): |
|
targets_per_image = batch_per_image['instances'].to(self.device) |
|
|
|
gt_masks = targets_per_image.gt_masks.tensor |
|
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) |
|
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks |
|
|
|
gt_boxes = targets_per_image.gt_boxes.tensor |
|
ratio = torch.tensor([w_pad,h_pad,w_pad,h_pad]).to(gt_boxes.device)[None,:] |
|
gt_boxes = gt_boxes / ratio |
|
xc,yc,w,h = (gt_boxes[:,0] + gt_boxes[:,2])/2, (gt_boxes[:,1] + gt_boxes[:,3])/2, gt_boxes[:,2] - gt_boxes[:,0], gt_boxes[:,3] - gt_boxes[:,1] |
|
gt_boxes = torch.stack([xc,yc,w,h]).permute(1,0) |
|
|
|
target_dict = { |
|
"labels": targets_per_image.gt_classes, |
|
"is_things": targets_per_image.is_things, |
|
"masks": padded_masks, |
|
"boxes": gt_boxes, |
|
} |
|
|
|
if self.task_switch['spatial']: |
|
|
|
target_dict['gt_spatial_masks'] = batch_per_image['spatial_query']['gt_masks'] |
|
|
|
if self.task_switch['grounding']: |
|
grd_masks = batch_per_image['groundings']['masks'] |
|
grd_texts = batch_per_image['groundings']['texts'] |
|
grd_hash = batch_per_image['groundings']['hash'] |
|
grd_task = batch_per_image['groundings']['mode'] |
|
|
|
if len(grd_masks) == 0: |
|
padded_masks = None |
|
else: |
|
padded_masks = torch.zeros((grd_masks.shape[0], h_pad, w_pad), dtype=grd_masks.dtype, device=grd_masks.device) |
|
padded_masks[:, : grd_masks.shape[1], : grd_masks.shape[2]] = grd_masks |
|
|
|
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) |
|
token_emb = gtext['token_emb'] |
|
tokens = gtext['tokens'] |
|
|
|
unique_hash_id = np.unique(grd_hash, return_index=True)[1] |
|
selected_mask = np.zeros(len(grd_hash)).astype(np.bool) |
|
selected_mask[unique_hash_id] = True |
|
|
|
selected_token_emb = token_emb[selected_mask] |
|
selected_attn_mask = tokens['attention_mask'][selected_mask] |
|
query_emb = selected_token_emb[selected_attn_mask.bool()] |
|
|
|
class_idx = tokens['attention_mask'].sum(dim=-1) - 1 |
|
class_idx = torch.stack((torch.arange(len(class_idx), device=class_idx.device), class_idx)).tolist() |
|
class_emb = token_emb[class_idx] |
|
|
|
target_dict['grounding_masks'] = padded_masks |
|
target_dict['grounding_query_embs'] = query_emb |
|
target_dict['grounding_class_embs'] = class_emb |
|
target_dict['grounding_hash'] = grd_hash |
|
target_dict['grounding_task'] = grd_task |
|
|
|
new_targets.append(target_dict) |
|
return new_targets |
|
|
|
def prepare_next_spaital_mask(self, outputs, batched_inputs, mode='best'): |
|
gt_masks = [batched_inputs[i]['spatial_query']['gt_masks'] for i in range(len(batched_inputs))] |
|
if self.training: |
|
gt_masks = ImageList.from_tensors(gt_masks, self.size_divisibility).tensor |
|
else: |
|
gt_masks = ImageList.from_tensors(gt_masks, self.size_divisibility).tensor.transpose(0,1) |
|
|
|
pred_masks = (F.interpolate(outputs['prev_mask'], size=gt_masks.shape[-2:], mode='bilinear', align_corners=False).sigmoid() > 0.5) |
|
prev_masks = torch.stack(outputs['spatial_query_pos_mask']) | torch.stack(outputs['spatial_query_neg_mask']) |
|
|
|
fn = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks) |
|
fp = (~gt_masks & pred_masks) & (~prev_masks) |
|
|
|
|
|
iou = (gt_masks & pred_masks).sum(list(range(1,len(fn.shape)))) / ((gt_masks | pred_masks).sum(dim=list(range(1,len(fn.shape)))) + 1e-8) |
|
fn_sum = fn.sum(dim=list(range(1,len(fn.shape)))) |
|
fp_sum = fp.sum(dim=list(range(1,len(fp.shape)))) |
|
|
|
is_postive = fn_sum > fp_sum |
|
|
|
select_mask = torch.stack([fn[i] if is_postive[i] else fp[i] for i in range(len(fn))]) |
|
|
|
|
|
n,_,h,w = select_mask.shape |
|
mask_dt = (distance_transform((~F.pad(select_mask, pad=(1, 1, 1, 1), mode='constant', value=0)).float())[:,:,1:-1,1:-1]).reshape(n,-1) |
|
if mode == 'best': |
|
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist() |
|
elif mode == 'best_random': |
|
max_xy_idx = torch.stack([torch.arange(n), torch.cat([(mask_dt[i] > 0).nonzero()[torch.randint(0, len((mask_dt[i] > 0).nonzero()), (1,))][0] for i in range(len(mask_dt))]).cpu()]).tolist() |
|
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() |
|
next_mask = next_mask.view(n,-1) |
|
next_mask[max_xy_idx] = True |
|
next_mask = next_mask.reshape((n,1,h,w)).float() |
|
dilation = 3 |
|
next_mask = F.conv2d(next_mask, self.dilation_kernel, padding=dilation//2) > 0 |
|
|
|
|
|
keep = (iou < 0.925) |
|
next_mask = next_mask & keep.view(-1,1,1,1) |
|
|
|
pos_mask = [] |
|
neg_mask = [] |
|
for idx, ip in enumerate(is_postive): |
|
if ip: |
|
pos_mask += [outputs['spatial_query_pos_mask'][idx] | next_mask[idx]] |
|
neg_mask += [outputs['spatial_query_neg_mask'][idx]] |
|
else: |
|
pos_mask += [outputs['spatial_query_pos_mask'][idx]] |
|
neg_mask += [outputs['spatial_query_neg_mask'][idx] | next_mask[idx]] |
|
|
|
if 'false_positive_mask' in outputs: |
|
fp = outputs['false_positive_mask'] | fp |
|
return {'spatial_query_pos_mask': pos_mask, 'spatial_query_neg_mask': neg_mask, 'false_positive_mask': fp} |
|
|
|
def semantic_inference(self, mask_cls, mask_pred): |
|
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] |
|
mask_pred = mask_pred.sigmoid() |
|
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) |
|
return semseg |
|
|
|
def panoptic_inference(self, mask_cls, mask_pred): |
|
scores, labels = F.softmax(mask_cls, dim=-1).max(-1) |
|
mask_pred = mask_pred.sigmoid() |
|
|
|
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) |
|
cur_scores = scores[keep] |
|
cur_classes = labels[keep] |
|
cur_masks = mask_pred[keep] |
|
cur_mask_cls = mask_cls[keep] |
|
cur_mask_cls = cur_mask_cls[:, :-1] |
|
|
|
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks |
|
|
|
h, w = cur_masks.shape[-2:] |
|
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) |
|
segments_info = [] |
|
|
|
current_segment_id = 0 |
|
|
|
if cur_masks.shape[0] == 0: |
|
|
|
return panoptic_seg, segments_info |
|
else: |
|
|
|
cur_mask_ids = cur_prob_masks.argmax(0) |
|
stuff_memory_list = {} |
|
for k in range(cur_classes.shape[0]): |
|
pred_class = cur_classes[k].item() |
|
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values() |
|
mask_area = (cur_mask_ids == k).sum().item() |
|
original_area = (cur_masks[k] >= 0.5).sum().item() |
|
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) |
|
|
|
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: |
|
if mask_area / original_area < self.overlap_threshold: |
|
continue |
|
|
|
|
|
if not isthing: |
|
if int(pred_class) in stuff_memory_list.keys(): |
|
panoptic_seg[mask] = stuff_memory_list[int(pred_class)] |
|
continue |
|
else: |
|
stuff_memory_list[int(pred_class)] = current_segment_id + 1 |
|
|
|
current_segment_id += 1 |
|
panoptic_seg[mask] = current_segment_id |
|
|
|
segments_info.append( |
|
{ |
|
"id": current_segment_id, |
|
"isthing": bool(isthing), |
|
"category_id": int(pred_class), |
|
} |
|
) |
|
|
|
return panoptic_seg, segments_info |
|
|
|
def instance_inference(self, mask_cls, mask_pred, box_pred): |
|
|
|
image_size = mask_pred.shape[-2:] |
|
|
|
|
|
scores = F.softmax(mask_cls, dim=-1)[:, :-1] |
|
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) |
|
|
|
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) |
|
|
|
labels_per_image = labels[topk_indices] |
|
topk_indices = (topk_indices // self.sem_seg_head.num_classes) |
|
|
|
mask_pred = mask_pred[topk_indices] |
|
if box_pred is not None: |
|
box_pred = box_pred[topk_indices] |
|
|
|
|
|
if self.panoptic_on: |
|
keep = torch.zeros_like(scores_per_image).bool() |
|
for i, lab in enumerate(labels_per_image): |
|
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values() |
|
|
|
scores_per_image = scores_per_image[keep] |
|
labels_per_image = labels_per_image[keep] |
|
mask_pred = mask_pred[keep] |
|
|
|
if box_pred is not None: |
|
box_pred = box_pred[keep] |
|
|
|
result = Instances(image_size) |
|
|
|
result.pred_masks = (mask_pred > 0).float() |
|
|
|
|
|
|
|
if box_pred is not None: |
|
result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() |
|
else: |
|
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) |
|
|
|
|
|
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) |
|
result.scores = scores_per_image * mask_scores_per_image |
|
result.pred_classes = labels_per_image |
|
|
|
return result |
|
|
|
def prepare_targets4query(self, targets, images, topk=5): |
|
h_pad, w_pad = images.tensor.shape[-2:] |
|
new_targets = [] |
|
new_queries = [] |
|
for targets_per_image in targets: |
|
|
|
unique_target_classes = [k for k in set(targets_per_image.gt_classes.tolist())] |
|
selected_target_classes = random.sample(unique_target_classes, min(topk, len(unique_target_classes))) |
|
new_targets_per_image = [] |
|
new_queries_per_image = [] |
|
for clss in selected_target_classes: |
|
indices = (targets_per_image.gt_classes == clss).nonzero().view(-1) |
|
|
|
gt_masks = targets_per_image.gt_masks[indices] |
|
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) |
|
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks |
|
|
|
|
|
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings([COCO_PANOPTIC_CLASSES[clss]], name='grounding') |
|
query = getattr(self.sem_seg_head.predictor.lang_encoder, 'grounding_text_embeddings') |
|
|
|
new_targets.append( |
|
{ |
|
"labels": targets_per_image.gt_classes[indices], |
|
"masks": padded_masks, |
|
} |
|
) |
|
new_queries_per_image.append(query) |
|
new_queries.append(new_queries_per_image) |
|
|
|
return new_targets, new_queries |
|
|
|
|
|
|
|
@register_model |
|
def get_seem_model(cfg, **kwargs): |
|
return GeneralizedSEEM(cfg) |