|
import random |
|
import torch |
|
|
|
from .mask_generators import get_mask_by_input_strokes |
|
|
|
class Circle: |
|
def __init__(self, cfg, is_train=True): |
|
self.num_stroke = cfg['STROKE_SAMPLER']['CIRCLE']['NUM_STROKES'] |
|
self.stroke_preset = cfg['STROKE_SAMPLER']['CIRCLE']['STROKE_PRESET'] |
|
self.stroke_prob = cfg['STROKE_SAMPLER']['CIRCLE']['STROKE_PROB'] |
|
self.max_eval = cfg['STROKE_SAMPLER']['EVAL']['MAX_ITER'] |
|
self.is_train = is_train |
|
|
|
@staticmethod |
|
def get_stroke_preset(stroke_preset): |
|
if stroke_preset == 'object_like': |
|
return { |
|
"nVertexBound": [5, 30], |
|
"maxHeadSpeed": 15, |
|
"maxHeadAcceleration": (10, 1.5), |
|
"brushWidthBound": (20, 50), |
|
"nMovePointRatio": 0.5, |
|
"maxPiontMove": 10, |
|
"maxLineAcceleration": (5, 0.5), |
|
"boarderGap": None, |
|
"maxInitSpeed": 10, |
|
} |
|
elif stroke_preset == 'object_like_middle': |
|
return { |
|
"nVertexBound": [5, 15], |
|
"maxHeadSpeed": 8, |
|
"maxHeadAcceleration": (4, 1.5), |
|
"brushWidthBound": (20, 50), |
|
"nMovePointRatio": 0.5, |
|
"maxPiontMove": 5, |
|
"maxLineAcceleration": (5, 0.5), |
|
"boarderGap": None, |
|
"maxInitSpeed": 10, |
|
} |
|
elif stroke_preset == 'object_like_small': |
|
return { |
|
"nVertexBound": [5, 20], |
|
"maxHeadSpeed": 7, |
|
"maxHeadAcceleration": (3.5, 1.5), |
|
"brushWidthBound": (10, 30), |
|
"nMovePointRatio": 0.5, |
|
"maxPiontMove": 5, |
|
"maxLineAcceleration": (3, 0.5), |
|
"boarderGap": None, |
|
"maxInitSpeed": 4, |
|
} |
|
else: |
|
raise NotImplementedError(f'The stroke presetting "{stroke_preset}" does not exist.') |
|
|
|
def get_random_points_from_mask(self, mask, n=5): |
|
h,w = mask.shape |
|
view_mask = mask.reshape(h*w) |
|
non_zero_idx = view_mask.nonzero()[:,0] |
|
selected_idx = torch.randperm(len(non_zero_idx))[:n] |
|
non_zero_idx = non_zero_idx[selected_idx] |
|
y = (non_zero_idx // w)*1.0 |
|
x = (non_zero_idx % w)*1.0 |
|
return torch.cat((x[:,None], y[:,None]), dim=1).numpy() |
|
|
|
def draw(self, mask=None, box=None): |
|
if mask.sum() < 10: |
|
return torch.zeros(mask.shape).bool() |
|
if not self.is_train: |
|
return self.draw_eval(mask=mask, box=box) |
|
stroke_preset_name = random.choices(self.stroke_preset, weights=self.stroke_prob, k=1)[0] |
|
preset = Circle.get_stroke_preset(stroke_preset_name) |
|
nStroke = min(random.randint(1, self.num_stroke), mask.sum().item()) |
|
h,w = mask.shape |
|
points = self.get_random_points_from_mask(mask, n=nStroke) |
|
rand_mask = get_mask_by_input_strokes( |
|
init_points=points, |
|
imageWidth=w, imageHeight=h, nStroke=min(nStroke, len(points)), **preset) |
|
rand_mask = (~torch.from_numpy(rand_mask)) * mask |
|
return rand_mask |
|
|
|
def draw_eval(self, mask=None, box=None): |
|
stroke_preset_name = random.choices(self.stroke_preset, weights=self.stroke_prob, k=1)[0] |
|
preset = Circle.get_stroke_preset(stroke_preset_name) |
|
nStroke = min(self.max_eval, mask.sum().item()) |
|
h,w = mask.shape |
|
points = self.get_random_points_from_mask(mask, n=nStroke) |
|
rand_masks = [] |
|
for i in range(len(points)): |
|
rand_mask = get_mask_by_input_strokes( |
|
init_points=points[:i+1], |
|
imageWidth=w, imageHeight=h, nStroke=min(nStroke, len(points[:i+1])), **preset) |
|
rand_masks += [(~torch.from_numpy(rand_mask)) * mask] |
|
return torch.stack(rand_masks) |
|
|
|
@staticmethod |
|
def draw_by_points(points, mask, h, w): |
|
stroke_preset_name = random.choices(['object_like', 'object_like_middle', 'object_like_small'], weights=[0.33,0.33,0.33], k=1)[0] |
|
preset = Circle.get_stroke_preset(stroke_preset_name) |
|
rand_mask = get_mask_by_input_strokes( |
|
init_points=points, |
|
imageWidth=w, imageHeight=h, nStroke=len(points), **preset)[None,] |
|
rand_masks = (~torch.from_numpy(rand_mask)) * mask |
|
return rand_masks |
|
|
|
def __repr__(self,): |
|
return 'circle' |