HakimAiV2 / datasets /visual_sampler /simpleclick_sampler.py
scdrand23's picture
not working version
814a594
raw
history blame
11.6 kB
import sys
import random
import cv2
import numpy as np
from scipy import ndimage
import torch
import torch.nn as nn
import torch.nn.functional as F
from kornia.contrib import distance_transform
from .point import Point
from .polygon import Polygon, get_bezier_curve
from .scribble import Scribble
from .circle import Circle
from modeling.utils import configurable
class SimpleClickSampler(nn.Module):
@configurable
def __init__(self, mask_mode='point', sample_negtive=False, is_train=True, dilation=None, dilation_kernel=None, max_points=None):
super().__init__()
self.mask_mode = mask_mode
self.sample_negtive = sample_negtive
self.is_train = is_train
self.dilation = dilation
self.register_buffer("dilation_kernel", dilation_kernel)
self.max_points = max_points
@classmethod
def from_config(cls, cfg, is_train=True, mode=None):
mask_mode = mode
sample_negtive = cfg['STROKE_SAMPLER']['EVAL']['NEGATIVE']
dilation = cfg['STROKE_SAMPLER']['DILATION']
dilation_kernel = torch.ones((1, 1, dilation, dilation), device=torch.cuda.current_device())
max_points = cfg['STROKE_SAMPLER']['POLYGON']['MAX_POINTS']
# Build augmentation
return {
"mask_mode": mask_mode,
"sample_negtive": sample_negtive,
"is_train": is_train,
"dilation": dilation,
"dilation_kernel": dilation_kernel,
"max_points": max_points,
}
def forward_point(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
next_mask = F.conv2d(next_mask[None,], self.dilation_kernel.repeat(len(next_mask),1,1,1), padding=self.dilation//2, groups=len(next_mask))[0] > 0
# end conv implementation
# disk implementation
# mask_dt = distance_transform((~fp)[None,].float())[0].view(n,-1)
# max_xy = mask_dt.max(dim=-1)[1]
# max_y, max_x = max_xy//w, max_xy%w
# max_xy_idx = torch.stack([max_y, max_x]).transpose(0,1)[:,:,None,None]
# y_idx = torch.arange(start=0, end=h, step=1, dtype=torch.float32, device=torch.cuda.current_device())
# x_idx = torch.arange(start=0, end=w, step=1, dtype=torch.float32, device=torch.cuda.current_device())
# coord_y, coord_x = torch.meshgrid(y_idx, x_idx)
# coords = torch.stack((coord_y, coord_x), dim=0).unsqueeze(0).repeat(len(max_xy_idx),1,1,1) # [bsx2,2,h,w], corresponding to 2d coordinate
# coords.add_(-max_xy_idx)
# coords.mul_(coords)
# next_mask = coords[:, 0] + coords[:, 1]
# next_mask = (next_mask <= 5**2)
# end disk implementation
rand_shapes = prev_masks | next_mask
types = ['point' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_circle(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
_next_mask = []
for idx in range(len(next_mask)):
points = next_mask[idx].nonzero().flip(dims=[-1]).cpu().numpy()
_next_mask += [Circle.draw_by_points(points, gt_masks[idx:idx+1].cpu(), h, w)]
next_mask = torch.cat(_next_mask, dim=0).bool()
rand_shapes = prev_masks | next_mask
types = ['circle' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_scribble(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
_next_mask = []
for idx in range(len(next_mask)):
points = next_mask[idx].nonzero().flip(dims=[-1]).cpu().numpy()
_next_mask += [Scribble.draw_by_points(points, gt_masks[idx:idx+1].cpu(), h, w)]
next_mask = torch.cat(_next_mask, dim=0).bool()
rand_shapes = prev_masks | next_mask
types = ['scribble' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_polygon(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
gt_boxes = instances.gt_boxes.tensor
n,h,w = gt_masks.shape
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
next_mask = []
for i in range(len(fp)):
rad = 0.2
edgy = 0.05
num_points = random.randint(1, min(self.max_points, fp[i].sum()))
h,w = fp[i].shape
view_mask = fp[i].reshape(h*w)
non_zero_idx = view_mask.nonzero()[:,0]
selected_idx = torch.randperm(len(non_zero_idx))[:num_points]
non_zero_idx = non_zero_idx[selected_idx]
y = (non_zero_idx // w)*1.0/(h+1)
x = (non_zero_idx % w)*1.0/(w+1)
coords = torch.cat((x[:,None],y[:,None]), dim=1).cpu().numpy()
x1,y1,x2,y2 = gt_boxes[i].int().unbind()
x,y, _ = get_bezier_curve(coords, rad=rad, edgy=edgy)
x = x.clip(0.0, 1.0)
y = y.clip(0.0, 1.0)
points = torch.from_numpy(np.concatenate((y[None,]*(y2-y1-1).item(),x[None,]*(x2-x1-1).item()))).int()
canvas = torch.zeros((y2-y1, x2-x1))
canvas[points.long().tolist()] = 1
rand_mask = torch.zeros(fp[i].shape)
rand_mask[y1:y2,x1:x2] = canvas
next_mask += [rand_mask]
next_mask = torch.stack(next_mask).to(pred_masks.device).bool()
rand_shapes = prev_masks | next_mask
types = ['polygon' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward_box(self, instances, pred_masks=None, prev_masks=None):
gt_masks = instances.gt_masks.tensor
gt_boxes = instances.gt_boxes.tensor
n,h,w = gt_masks.shape
for i in range(len(gt_masks)):
x1,y1,x2,y2 = gt_boxes[i].int().unbind()
gt_masks[i,y1:y2,x1:x2] = 1
# We only consider positive points
pred_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if pred_masks is None else pred_masks[:,:h,:w]
prev_masks = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() if prev_masks is None else prev_masks
if not gt_masks.is_cuda:
gt_masks = gt_masks.to(pred_masks.device)
fp = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks)
# conv implementation
mask_dt = (distance_transform((~F.pad(fp[None,], pad=(1, 1, 1, 1), mode='constant', value=0)).float())[0,:,1:-1,1:-1]).reshape(n,-1)
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(n,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((n,h,w)).float()
next_mask = F.conv2d(next_mask[None,], self.dilation_kernel.repeat(len(next_mask),1,1,1), padding=self.dilation//2, groups=len(next_mask))[0] > 0
# end conv implementation
rand_shapes = prev_masks | next_mask
types = ['box' for i in range(len(gt_masks))]
return {'gt_masks': instances.gt_masks.tensor, 'rand_shape': rand_shapes[:,None], 'types': types}
def forward(self, instances, *args, **kwargs):
if self.mask_mode == 'Point':
return self.forward_point(instances, *args, **kwargs)
elif self.mask_mode == 'Circle':
return self.forward_circle(instances, *args, **kwargs)
elif self.mask_mode == 'Scribble':
return self.forward_scribble(instances, *args, **kwargs)
elif self.mask_mode == 'Polygon':
return self.forward_polygon(instances, *args, **kwargs)
elif self.mask_mode == 'Box':
return self.forward_box(instances, *args, **kwargs)
def build_shape_sampler(cfg, **kwargs):
return ShapeSampler(cfg, **kwargs)