File size: 41,287 Bytes
814a594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by Xueyan Zou ([email protected])
# --------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
MaskFormer criterion.
"""
import logging
import torch
import torch.nn.functional as F
from torch import nn
from detectron2.utils.comm import get_world_size
from timm.loss import SoftTargetCrossEntropy
from .point_features import (
get_uncertain_point_coords_with_randomness,
point_sample,
)
from ..language.loss import ql_multi_contrastive_loss, image_text_contrastive_loss_queue, vl_similarity, all_gather_grad
from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list, _max_by_axis
from ..utils import box_ops
# from image2html.visualizer import VL
def dice_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(-1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_masks
dice_loss_jit = torch.jit.script(
dice_loss
) # type: torch.jit.ScriptModule
def sigmoid_ce_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
Loss tensor
"""
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
return loss.mean(1).sum() / num_masks
sigmoid_ce_loss_jit = torch.jit.script(
sigmoid_ce_loss
) # type: torch.jit.ScriptModule
def calculate_uncertainty(logits):
"""
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
foreground class in `classes`.
Args:
logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
class-agnostic, where R is the total number of predicted masks in all images and C is
the number of foreground classes. The values are logits.
Returns:
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
the most uncertain locations having the highest uncertainty score.
"""
assert logits.shape[1] == 1
gt_class_logits = logits.clone()
return -(torch.abs(gt_class_logits))
class SetCriterion(nn.Module):
"""This class computes the loss for DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, num_classes, matcher, weight_dict, eos_coef, top_x_layers, losses,
num_points, oversample_ratio, importance_sample_ratio, grounding_weight):
"""Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
self.top_x_layers = top_x_layers
self.losses = losses
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# pointwise mask loss parameters
self.num_points = num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
# grounding
self.grounding_weight = grounding_weight
def loss_labels(self, outputs, targets, indices, num_masks, layer_id, extra):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
if layer_id > self.top_x_layers['mask']:
return {"loss_mask_ce_0": 0}
if indices is None or len(targets) == 0:
loss_ce = outputs['pred_logits'].sum() * 0.0
losses = {"loss_mask_ce_0": loss_ce}
return losses
assert "pred_logits" in outputs
src_logits = outputs["pred_logits"].type(self.empty_weight.dtype)
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_o
if src_logits.shape[2] == self.num_classes+1:
empty_weight = torch.ones(self.num_classes + 1).to(src_logits.device).type(self.empty_weight.dtype)
empty_weight[-1] = self.eos_coef
else:
empty_weight = torch.ones(self.num_classes + 1000 + 1).to(src_logits.device).type(self.empty_weight.dtype)
empty_weight[self.num_classes] = self.eos_coef
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes)
losses = {"loss_mask_ce_0": loss_ce}
return losses
def loss_labels_openimage(self, outputs, targets, indices, num_masks, layer_id, extra):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
if layer_id > self.top_x_layers['mask']:
return {"loss_openimage_ce_0": 0}
assert "pred_captions" in outputs
if indices is None or len(targets) == 0 or (len(targets) > 0 and len(targets[0]['labels']) == 0):
loss_ce = outputs['pred_captions'].sum() * 0.0
losses = {"loss_openimage_ce_0": loss_ce}
return losses
# compute i2t loss
loss_openimage_ce = 0
losses = {}
for b in range(len(indices)):
pred_logit = outputs["pred_logits"][b][indices[b][0]]
gt_logit = torch.zeros_like(pred_logit)
select_idx = torch.stack((torch.arange(len(indices[b][1])), indices[b][1])).tolist()
gt_logit[select_idx] = 1
loss_openimage_ce += torch.sum(-gt_logit * F.log_softmax(pred_logit, dim=-1), dim=-1).mean()
loss_openimage_ce = loss_openimage_ce / len(indices)
losses.update({"loss_openimage_ce_0": loss_openimage_ce})
return losses
def loss_itc(self, outputs, targets, indices, num_masks, layer_id, extra):
if layer_id >= self.top_x_layers['retrieval']:
return {"loss_retrieval_decoder_0": 0}
t_emb = torch.cat([x['caption_proj'] for x in targets], dim=0)
v_emb = outputs['pred_captions'][:,-1]
loss_contrast = image_text_contrastive_loss_queue(v_emb, t_emb, extra['lang_encoder'], extra['training'])
# compute query-token contrastive loss
ttk_emb = torch.cat([x['caption_tokens'] for x in targets], dim=0)
ttk_mask = torch.cat([x['caption_mask'] for x in targets], dim=0).float()
ttk_mask = ttk_mask * torch.cumsum(ttk_mask, dim=1)
vtk_emb = outputs['pred_captions'][:,:-1]
keep = torch.cat([x['caption_mask'] for x in targets], dim=0).bool()
ttk_emb = ttk_emb / (ttk_emb.norm(dim=-1, keepdim=True) + 1e-7)
vtk_emb = vtk_emb / (vtk_emb.norm(dim=-1, keepdim=True) + 1e-7)
logit_scale = extra['lang_encoder'].logit_scale.exp().clamp(max=100)
# prepare gt
gt = (torch.eye(vtk_emb.shape[0]).type_as(ttk_mask).unsqueeze(-1) * ttk_mask.unsqueeze(0).repeat(vtk_emb.shape[0], 1, 1))[:,keep].flatten(1)
gt = gt / (gt.sum(1, keepdim=True) + 1e-7)
# compute i2t loss
logits = logit_scale * (vtk_emb @ ttk_emb[keep].transpose(0, 1)).mean(1)
loss_contrast_fine_vt = SoftTargetCrossEntropy()(logits, gt)
# loss_contrast_fine = loss_contrast_fine_vt # i2t only
# compute t2i loss
bs, nq, _ = vtk_emb.shape
logits = logit_scale * (ttk_emb @ vtk_emb.flatten(0,1).transpose(0, 1)).reshape(bs,-1,bs,nq).mean(dim=-1)[keep,:]
loss_contrast_fine_tv = SoftTargetCrossEntropy()(logits, gt.t())
# compute loss
loss_contrast_fine = (loss_contrast_fine_vt * 0.7 + loss_contrast_fine_tv * 0.3)
losses = {"loss_retrieval_decoder_0": loss_contrast + loss_contrast_fine * 0.5}
return losses
def loss_captionings(self, outputs, targets, indices, num_masks, layer_id, extra):
if layer_id >= self.top_x_layers['captioning']:
return {"loss_captioning_0": 0}
pred_captions_gen = outputs['pred_captionings'][:, :-1]
token_embs = extra['token_embedding'].weight
# token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
# pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
pred_captions_gen = pred_captions_gen @ token_embs.t()
# temperature = extra['lang_encoder'].logit_scale
# logit_scale = temperature.exp().clamp(max=100)
target_captions_gen = torch.cat([target['caption_tokenids'] for target in targets], 0)[:, 1:]
target_captions_gen_mask = torch.cat([target['caption_mask'] for target in targets], 0)[:, 1:]
# loss_caption = F.cross_entropy(pred_captions_gen.transpose(1,2) * logit_scale, target_captions_gen, reduction='none')
loss_caption = F.cross_entropy(pred_captions_gen.transpose(1,2), target_captions_gen, reduction='none')
loss_caption = (loss_caption * target_captions_gen_mask).sum() / (target_captions_gen_mask.sum() + 1)
losses = {"loss_captioning_0": loss_caption}
return losses
def loss_captions(self, outputs, targets, indices, num_masks, layer_id, extra):
if layer_id >= self.top_x_layers['caption']:
return {"loss_caption_0": 0}
matched_tokens = [m[0] for m in indices]
t_emb_class = torch.cat([extra['class_embeddings'][targets[bs]['labels'][m[1]]] for bs, m in enumerate(indices)])
t_hash_class = torch.cat([torch.tensor(targets[bs]['labels_hash'])[m[1]] for bs, m in enumerate(indices)])
# pred_captions denotes all unmatched object queries.
unmatched_pred_captions = []
matched_pred_captions = []
for idx, m in enumerate(matched_tokens):
unmatched_masks = torch.ones(outputs['pred_captions'].shape[1:-1]).bool()
matched_masks = torch.zeros(outputs['pred_captions'].shape[1:-1]).bool()
unmatched_masks[m] = False
matched_masks[m] = True
unmatched_pred_captions.append(outputs['pred_captions'][idx][unmatched_masks])
matched_pred_captions.append(outputs['pred_captions'][idx][matched_masks])
outputs['unmatched_pred_captions'] = unmatched_pred_captions
v_emb_class = torch.cat(matched_pred_captions)
v_emb_class = v_emb_class / (v_emb_class.norm(dim=-1, keepdim=True) + 1e-7)
indices = self.matcher(outputs, targets, mode="caption_womask", extra={'temperature':extra['lang_logit']})
src_idx = self._get_src_permutation_idx(indices)
t_emb = torch.cat([t['captions'][indices[bs][1]] for bs,t in enumerate(targets)])
t_hash = torch.cat([torch.tensor(t['captions_hash'])[indices[bs][1]] for bs,t in enumerate(targets)])
unmatched_pred_captions, _ = nested_tensor_from_tensor_list(unmatched_pred_captions).decompose()
v_emb = unmatched_pred_captions[src_idx]
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
loss_contrast = ql_multi_contrastive_loss(torch.cat((v_emb, v_emb_class)), torch.cat((t_emb, t_emb_class)), torch.cat((t_hash, t_hash_class)), temperature=extra['lang_logit'])
losses = {"loss_caption_0": loss_contrast}
return losses
def loss_masks(self, outputs, targets, indices, num_masks, layer_id, extra):
"""Compute the losses related to the masks: the focal loss and the dice loss.
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
"""
if layer_id >= self.top_x_layers['mask']:
return {"loss_mask_bce_0": 0, "loss_mask_dice_0": 0}
assert "pred_masks" in outputs
if indices is None or len(targets) == 0:
loss = outputs['pred_masks'].sum() * 0.0
losses = {"loss_mask_bce_0": loss, "loss_mask_dice_0": loss}
return losses
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
src_masks = outputs["pred_masks"]
src_masks = src_masks[src_idx]
masks = [t["masks"] for t in targets]
# TODO use valid to mask invalid areas due to padding in loss
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(src_masks)
target_masks = target_masks[tgt_idx]
# No need to upsample predictions as we are using normalized coordinates :)
# N x 1 x H x W
src_masks = src_masks[:, None]
target_masks = target_masks[:, None]
with torch.no_grad():
# sample point_coords
point_coords = get_uncertain_point_coords_with_randomness(
src_masks,
lambda logits: calculate_uncertainty(logits),
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
).type(src_masks.dtype)
# get gt labels
point_labels = point_sample(
target_masks,
point_coords,
align_corners=False,
).squeeze(1)
point_logits = point_sample(
src_masks,
point_coords,
align_corners=False,
).squeeze(1)
losses = {
"loss_mask_bce_0": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks),
"loss_mask_dice_0": dice_loss_jit(point_logits, point_labels, num_masks),
}
del src_masks
del target_masks
return losses
def loss_groundings(self, outputs, targets, indices, num_masks, layer_id, extra):
"""Compute the losses related to the masks: the focal loss and the dice loss.
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
"""
assert "pred_gmasks" in outputs
assert "pred_gtexts" in outputs
if layer_id >= self.top_x_layers['grounding']:
return {"loss_grounding_bce_0": 0, "loss_grounding_dice_0": 0, "loss_grounding_ce_0": 0}
masks = [t["grounding_masks"] for t in targets]
if indices is None or None in masks:
loss = outputs['pred_gmasks'].sum() * 0.0
return {"loss_grounding_bce_0": loss, "loss_grounding_dice_0": loss, "loss_grounding_ce_0": loss}
pred_logits = []
for b in range(len(indices)):
t_emb = targets[b]['grounding_class_embs']
v_emb = outputs["pred_gtexts"][b]
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
out_prob = vl_similarity(v_emb, t_emb, temperature=extra['lang_logit'])
pred_logits += [out_prob]
outputs['pred_logits'] = pred_logits
indices = self.matcher(outputs, targets, mode='grounding', extra={'temperature':extra['lang_logit']})
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
src_masks = outputs["pred_gmasks"]
src_masks = src_masks[src_idx]
# TODO use valid to mask invalid areas due to padding in loss
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(src_masks)
target_masks = target_masks[tgt_idx]
# No need to upsample predictions as we are using normalized coordinates :)
# N x 1 x H x W
src_masks = src_masks[:, None]
target_masks = target_masks[:, None]
with torch.no_grad():
# sample point_coords
point_coords = get_uncertain_point_coords_with_randomness(
src_masks,
lambda logits: calculate_uncertainty(logits),
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
).type(src_masks.dtype)
# get gt labels
point_labels = point_sample(
target_masks,
point_coords,
align_corners=False,
).squeeze(1)
point_logits = point_sample(
src_masks,
point_coords,
align_corners=False,
).squeeze(1)
losses = {
"loss_grounding_bce_0": sigmoid_ce_loss_jit(point_logits, point_labels, len(src_masks)),
"loss_grounding_dice_0": dice_loss_jit(point_logits, point_labels, len(src_masks)),
}
# compute query-token contrastive loss
# ttk_emb = torch.cat([x['caption_tokens'] for x in targets], dim=0)
# ttk_mask = torch.cat([x['caption_mask'] for x in targets], dim=0).float()
# ttk_mask = ttk_mask * torch.cumsum(ttk_mask, dim=1)
# vtk_emb = outputs['pred_captions'][:,:-1]
# keep = torch.cat([x['caption_mask'] for x in targets], dim=0).bool()
# ttk_emb = ttk_emb / (ttk_emb.norm(dim=-1, keepdim=True) + 1e-7)
# vtk_emb = vtk_emb / (vtk_emb.norm(dim=-1, keepdim=True) + 1e-7)
# logit_scale = extra['lang_encoder'].logit_scale.exp().clamp(max=100)
# # prepare gt
# gt = (torch.eye(vtk_emb.shape[0]).type_as(ttk_mask).unsqueeze(-1) * ttk_mask.unsqueeze(0).repeat(vtk_emb.shape[0], 1, 1))[:,keep].flatten(1)
# gt = gt / (gt.sum(1, keepdim=True) + 1e-7)
# # compute i2t loss
# logits = logit_scale * (vtk_emb @ ttk_emb[keep].transpose(0, 1)).mean(1)
# loss_contrast_fine_vt = SoftTargetCrossEntropy()(logits, gt)
# # loss_contrast_fine = loss_contrast_fine_vt # i2t only
# # compute t2i loss
# bs, nq, _ = vtk_emb.shape
# logits = logit_scale * (ttk_emb @ vtk_emb.flatten(0,1).transpose(0, 1)).reshape(bs,-1,bs,nq).mean(dim=-1)[keep,:]
# loss_contrast_fine_tv = SoftTargetCrossEntropy()(logits, gt.t())
# # compute loss
# loss_contrast_fine = (loss_contrast_fine_vt * 0.7 + loss_contrast_fine_tv * 0.3)
# compute t2i loss
loss_grd_ce = 0
for b in range(len(indices)):
task = targets[b]['grounding_task']
pred_logit = outputs["pred_logits"][b]
gt_logit = torch.zeros_like(pred_logit)
select_idx = torch.stack((indices[b][0], indices[b][1])).tolist()
gt_logit[select_idx] = 1
t_hash = torch.tensor(targets[b]['grounding_hash'], device=gt_logit.device)
hash_table = torch.zeros((len(t_hash), len(t_hash)), device=gt_logit.device)
for idx in range(0, len(hash_table)):
hash_table[idx][t_hash==t_hash[idx]] = 1
hash_table = hash_table / hash_table.sum(-1, keepdim=True)
gt_logit = gt_logit @ hash_table
loss_grd_ce += self.grounding_weight[task]*torch.sum(-gt_logit.t() * F.log_softmax(pred_logit.t(), dim=-1), dim=-1).mean()
loss_grd_ce = loss_grd_ce / len(indices)
losses.update({"loss_grounding_ce_0": loss_grd_ce})
del src_masks
del target_masks
return losses
def loss_spatials(self, outputs, targets, indices, num_masks, layer_id, extra):
"""Compute the losses related to the masks: the focal loss and the dice loss.
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
"""
assert "pred_smasks" in outputs
assert "pred_smaskembs" in outputs
if layer_id >= self.top_x_layers['spatial']:
loss = outputs['pred_smasks'].sum() * 0.0
loss_grd_ce = outputs["pred_smasks"].sum() * 0.0
return {"loss_spatial_bce_0": loss, "loss_spatial_dice_0": loss, "loss_spatial_ce_0": loss_grd_ce}
gt_masks = [x['gt_spatial_masks'] for x in targets]
# compute a keep index with batch size to avoid empty gt_masks
stack_gt_mask = torch.cat(gt_masks)
bs,_,_ = stack_gt_mask.shape
stack_gt_mask = stack_gt_mask.view(bs,-1).sum(dim=-1)
keep = stack_gt_mask > 0 # only keep sample contain positive mask
if keep.sum() == 0:
loss = outputs['pred_smasks'].sum() * 0.0
loss_grd_ce = outputs["pred_smasks"].sum() * 0.0
return {"loss_spatial_bce_0": loss, "loss_spatial_dice_0": loss, "loss_spatial_ce_0": loss_grd_ce}
# mask embedding logits
v_emb = outputs["pred_smaskembs"] # [bs, nq, 512]
# pos mask
s_emb = outputs["pred_pspatials"] # [bs, ns, 512]
pred_logits = v_emb @ s_emb.transpose(1,2)
outputs['pred_pos_logits'] = pred_logits # [bs, nq, 1]
indices = self.matcher(outputs, targets, mode='spatial', extra={})
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
# pos class loss
pred_logit = torch.cat([o[:len(t['gt_spatial_masks'])] for o,t in zip(outputs["pred_pos_logits"].transpose(1,2), targets)])
gt_logit = torch.zeros_like(pred_logit)
gt_logit = gt_logit[keep]
_src_idx = [torch.arange(keep.sum(), device=src_idx[0].device), src_idx[1][keep.cpu()]]
gt_logit[_src_idx] = 1
pred_logit = pred_logit[keep]
loss_spa_ce_pos = torch.sum(-gt_logit * F.log_softmax(pred_logit, dim=-1), dim=-1).mean()
# neg mask
# s_emb = outputs["pred_nspatials"] # [bs, ns, 512]
# neg_mask = (s_emb.sum(dim=list(range(1, len(s_emb.shape)))) != 0).float()[keep]
# pred_logits = v_emb @ s_emb.transpose(1,2)
# outputs['pred_neg_logits'] = pred_logits # [bs, nq, 1]
# indices = self.matcher(outputs, targets, mode='spatial_pn', extra=extra)
# src_idx = self._get_src_permutation_idx(indices)
# tgt_idx = self._get_tgt_permutation_idx(indices)
# src_masks_neg = outputs["pred_smasks"][src_idx][keep]
# src_masks_neg = src_masks_neg*(neg_mask[:,None,None])
# src_masks_neg = src_masks_neg.clip(0) * (-1)
# neg class loss
# pred_logit = outputs["pred_neg_logits"]
# gt_logit = torch.zeros_like(pred_logit)
# gt_logit[src_idx] = 1
# bs,_,ns = pred_logit[keep].shape
# pred_logit = pred_logit[keep].transpose(1,2).view(bs*ns,-1)
# gt_logit = gt_logit[keep].transpose(1,2).view(bs*ns,-1)
# loss_spa_ce_neg = (torch.sum(-gt_logit * F.log_softmax(pred_logit, dim=-1), dim=-1)*neg_mask).sum() / (neg_mask.sum()+1e-6)
# recompute a keep index with matched tgt
stack_gt_mask = nn.utils.rnn.pad_sequence(gt_masks, padding_value=-1).transpose(0,1)[tgt_idx]
bs,_,_ = stack_gt_mask.shape
target_masks = stack_gt_mask
stack_gt_mask = stack_gt_mask.view(bs,-1).sum(dim=-1)
keep = stack_gt_mask > 0 # only keep sample contain positive mask
src_masks_pos = outputs["pred_smasks"][src_idx][keep]
# TODO use valid to mask invalid areas due to padding in loss
target_masks = target_masks.to(src_masks_pos)
target_masks = target_masks[keep]
# mul = extra['spatial_query_mode'][keep]
# src_masks_cur = src_masks_cur.clip(0) * mul[:,None,None]
# src_masks_cur = src_masks_cur
# if neg_mask[0] == 1:
# import cv2
# print(src_masks_pos.shape)
# print(src_masks_neg.shape)
# print(target_masks.shape)
# # import pdb; pdb.set_trace()
# v_pos_mask = (src_masks_pos[0].sigmoid() > 0.5).float().cpu().detach().numpy() * 255
# v_neg_mask = (_src_masks_neg[0].sigmoid() > 0.5).float().cpu().detach().numpy() * 255
# v_sum = ((src_masks_pos[0]-_src_masks_neg[0].clip(0)).sigmoid() > 0.5).float().cpu().detach().numpy() * 255
# v_gt = target_masks[0].float().cpu().detach().numpy() * 255
# cv2.imwrite('v_pos_mask.png', v_pos_mask)
# cv2.imwrite('v_neg_mask.png', v_neg_mask)
# cv2.imwrite('v_sum.png', v_sum)
# cv2.imwrite('v_gt.png', v_gt)
# import pdb; pdb.set_trace()
# src_masks = (src_masks_pos + src_masks_neg)[:, None]
src_masks = src_masks_pos[:, None]
target_masks = target_masks[:, None]
# debug visualization
# with torch.no_grad():
# import cv2
# import numpy as np
# v_src_masks = (F.interpolate(src_masks, size=target_masks.shape[-2:], mode='bilinear', align_corners=False).sigmoid() > 0.5).float().cpu().numpy()[:,0] * 255
# v_target_masks = target_masks.float().cpu().numpy()[:,0] * 255
# v_masks = np.concatenate([v_src_masks, v_target_masks], axis=2)
# for i in range(len(src_masks)):
# v1 = v_src_masks[i]
# v2 = v_target_masks[i]
# v = np.concatenate([v1,v2], axis=1)
# cv2.imwrite('v{}.png'.format(i), v)
# import pdb; pdb.set_trace()
# visualization
# VL.step()
# v_img = batched_inputs[0]['image'].permute(1,2,0).cpu().numpy()
# VL.add_image(v_img[:,:,::-1])
# candidate_masks = batched_inputs[0]['spatial_query']['rand_shape'].float().cpu().numpy()
# gt_masks = batched_inputs[0]['spatial_query']['gt_masks'].float().cpu().numpy()
# texts = ['cmask' for i in range(len(candidate_masks))]
# VL.overlay_obj_mask_to_image(v_img[:,:,::-1], candidate_masks, texts)
# texts = ['gmask' for i in range(len(candidate_masks))]
# VL.overlay_obj_mask_to_image(v_img[:,:,::-1], gt_masks, texts)
# import cv2
# for i in range(len(src_masks)):
# visual_src_mask_cur = (src_masks_cur[i].sigmoid()>0.5).detach().float().cpu().numpy() * 255
# visual_src_mask_mem = (src_masks_mem[i].sigmoid()>0.5).detach().float().cpu().numpy() * 255
# visual_src_mask = (src_masks[i,0].sigmoid()>0.5).detach().float().cpu().numpy() * 255
# visual_target_mask = (target_masks[i,0].sigmoid()>0.5).detach().float().cpu().numpy() * 255
# cv2.imwrite('visual_src_mask_cur_{}_{}.png'.format(i, mul[i].item()), visual_src_mask_cur)
# cv2.imwrite('visual_src_mask_mem_{}_{}.png'.format(i, mul[i].item()), visual_src_mask_mem)
# cv2.imwrite('visual_src_mask_{}_{}.png'.format(i, mul[i].item()), visual_src_mask)
# cv2.imwrite('visual_target_mask_{}_{}.png'.format(i, mul[i].item()), visual_target_mask)
# import pdb; pdb.set_trace()
with torch.no_grad():
# sample point_coords
point_coords = get_uncertain_point_coords_with_randomness(
src_masks,
lambda logits: calculate_uncertainty(logits),
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
).type(src_masks.dtype)
# get gt labels
point_labels = point_sample(
target_masks,
point_coords,
align_corners=False,
).squeeze(1)
point_logits = point_sample(
src_masks,
point_coords,
align_corners=False,
).squeeze(1)
num_masks = len(src_masks)
losses = {
"loss_spatial_bce_0": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks),
"loss_spatial_dice_0": dice_loss_jit(point_logits, point_labels, num_masks),
}
# losses.update({"loss_spatial_ce_0": loss_spa_ce_pos + loss_spa_ce_neg})
losses.update({"loss_spatial_ce_0": loss_spa_ce_pos})
del src_masks
del target_masks
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes, layer_id, extra):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
if layer_id >= self.top_x_layers['box']:
return {"loss_bbox_0": 0, "loss_giou_0": 0}
assert 'pred_boxes' in outputs
if indices is None or len(targets) == 0:
loss = outputs['pred_boxes'].sum() * 0.0
losses = {"loss_bbox_0": loss, "loss_giou_0": loss}
return losses
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
src_boxes = outputs["pred_boxes"]
src_boxes = src_boxes[src_idx].sigmoid()
target_boxes = [t['boxes'] for t in targets]
max_size = _max_by_axis([list(box.shape) for box in target_boxes])
max_size = [len(target_boxes)] + max_size
empty_boxes = torch.zeros(max_size).to(src_boxes.device)
for idx, tar_box in enumerate(target_boxes):
empty_boxes[idx,:tar_box.shape[0],:] = tar_box
target_boxes = empty_boxes[tgt_idx]
# target_isthings = [t['is_things'] for t in targets]
# max_size = _max_by_axis([list(lab.shape) for lab in target_isthings])
# max_size = [len(target_isthings)] + max_size
# empty_lab = torch.zeros(max_size).to(src_boxes.device)
# for idx, tar_thing in enumerate(target_isthings):
# empty_lab[idx,:tar_thing.shape[0]] = tar_thing
# target_isthings = empty_lab[tgt_idx]
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
losses = {}
losses['loss_bbox_0'] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
box_ops.box_cxcywh_to_xyxy(src_boxes),
box_ops.box_cxcywh_to_xyxy(target_boxes)))
losses['loss_giou_0'] = loss_giou.sum() / num_boxes
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_masks, layer_id, extra):
loss_map = {
'labels': self.loss_labels,
'masks': self.loss_masks,
'boxes': self.loss_boxes,
'captions': self.loss_captions,
'retrievals': self.loss_itc,
'captionings': self.loss_captionings,
'groundings': self.loss_groundings,
'labels_openimage': self.loss_labels_openimage,
'spatials': self.loss_spatials,
}
assert loss in loss_map, f"do you really want to compute {loss} loss?"
return loss_map[loss](outputs, targets, indices, num_masks, layer_id, extra)
def forward(self, outputs, targets, extra=None):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_masks = sum(len(t["labels"]) for t in targets)
num_masks = torch.as_tensor(
[num_masks], dtype=torch.float, device=next(iter(outputs_without_aux.values())).device
)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_masks)
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks, 0, extra))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "aux_outputs" in outputs:
# NOTE: we reverse the aux_outputs so that the first is the second last layer
for i, aux_outputs in enumerate(outputs["aux_outputs"][::-1]):
indices = self.matcher(aux_outputs, targets)
for loss in self.losses:
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks, (i+1), extra)
l_dict = {k.replace('_0', f"_{i+1}"): v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
def forward_vlp(self, outputs, targets, extra=None):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
# Compute all the requested losses
losses = {}
num_masks = indices = None
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks, 0, extra))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "aux_outputs" in outputs:
# NOTE: we reverse the aux_outputs so that the first is the second last layer
for i, aux_outputs in enumerate(outputs["aux_outputs"][::-1]):
for loss in self.losses:
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks, (i+1), extra)
l_dict = {k.replace('_0', f"_{i+1}"): v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
def forward_grounding(self, outputs, targets, extra=None):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
# Compute all the requested losses
losses = {}
indices = [[] for i in range(len(targets))]
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_masks = sum(len(t["grounding_masks"]) for t in targets) + 1e-7
num_masks = torch.as_tensor(
[num_masks], dtype=torch.float, device=next(iter(outputs.values())).device
)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_masks)
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks, 0, extra))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "aux_outputs" in outputs:
# NOTE: we reverse the aux_outputs so that the first is the second last layer
for i, aux_outputs in enumerate(outputs["aux_outputs"][::-1]):
for loss in self.losses:
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks, (i+1), extra)
l_dict = {k.replace('_0', f"_{i+1}"): v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
def forward_openimage(self, outputs, targets, extra=None):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
neg_class_emb = all_gather_grad(torch.cat([x['neg_class_emb'] for x in targets]))
neg_hash = all_gather_grad(torch.cat([x['neg_hash'] for x in targets]))
extra['neg_class_emb'] = neg_class_emb
extra['neg_hash'] = neg_hash
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices, pred_logits = self.matcher.openimage_forward(outputs_without_aux, targets, extra=extra)
outputs['pred_logits'] = pred_logits
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_masks = sum(len(t["labels"]) for t in targets)
num_masks = torch.as_tensor(
[num_masks], dtype=torch.float, device=neg_class_emb.device
)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_masks)
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks, 0, extra))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "aux_outputs" in outputs:
# NOTE: we reverse the aux_outputs so that the first is the second last layer
for i, aux_outputs in enumerate(outputs["aux_outputs"][::-1]):
indices, pred_logits = self.matcher.openimage_forward(aux_outputs, targets, extra=extra)
aux_outputs['pred_logits'] = pred_logits
for loss in self.losses:
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks, (i+1), extra)
l_dict = {k.replace('_0', f"_{i+1}"): v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
def __repr__(self):
head = "Criterion " + self.__class__.__name__
body = [
"matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
"losses: {}".format(self.losses),
"weight_dict: {}".format(self.weight_dict),
"num_classes: {}".format(self.num_classes),
"eos_coef: {}".format(self.eos_coef),
"num_points: {}".format(self.num_points),
"oversample_ratio: {}".format(self.oversample_ratio),
"importance_sample_ratio: {}".format(self.importance_sample_ratio),
]
_repr_indent = 4
lines = [head] + [" " * _repr_indent + line for line in body]
return "\n".join(lines)
|