File size: 8,613 Bytes
814a594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou ([email protected])
# --------------------------------------------------------

import torch
from torch import nn
from torch.nn import functional as F

from timm.models.layers import trunc_normal_

from .build import register_model
from ..utils import configurable
from .LangEncoder import build_tokenizer, build_lang_encoder
from utilities.prompt_engineering import prompt_engineering, get_prompt_templates

from transformers import AutoTokenizer, AutoModel

class LanguageEncoder(nn.Module):

    @configurable
    def __init__(
        self,
        tokenizer,
        tokenizer_type,
        lang_encoder,
        lang_projection,
        max_token_num,
        queue_operator,
    ):
        super().__init__()
        # seg
        self.tokenizer = tokenizer
        self.tokenizer_type = tokenizer_type
        self.lang_encoder = lang_encoder
        self.lang_proj = lang_projection
        self.max_token_num = max_token_num
        self.logit_scale = nn.Parameter(torch.ones([]))
        
        self.device = lang_projection.device
        # captioning & retrieval
        for key, value in queue_operator.items():
            self.register_buffer(key, value)
            
        self.biomed_encoder = AutoModel.from_pretrained("microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext")
        self.biomed_encoder.to(self.device)
    @classmethod
    def from_config(cls, cfg):
        # build up text encoder for seg
        tokenizer = build_tokenizer(cfg['MODEL']['TEXT'])
        tokenizer_type = cfg['MODEL']['TEXT']['TOKENIZER']
        lang_encoder = build_lang_encoder(cfg['MODEL']['TEXT'], tokenizer, cfg['VERBOSE'])
        max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
        
        dim_lang = cfg['MODEL']['TEXT']['WIDTH']
        dim_projection = cfg['MODEL']['DIM_PROJ']
        lang_projection = nn.Parameter(torch.empty(dim_lang, dim_projection))
        trunc_normal_(lang_projection, std=.02)

        # tested not working better      
        queue_operator = {}

        return {
            "tokenizer": tokenizer,
            "tokenizer_type": tokenizer_type,
            "lang_encoder": lang_encoder,
            "lang_projection": lang_projection,
            "max_token_num": max_token_num,
            "queue_operator": queue_operator,
        }

    def get_text_embeddings(self, class_names, name='default', is_eval=False, add_bgd=False, prompt=True, norm=True, store_buffer=None):
        if not is_eval:
            if prompt:
                # randomly sample one template
                arbitary_concepts = [
                    prompt_engineering(class_names[label].replace('-other','').replace('-merged','').replace('-stuff',''), topk=10000, suffix='.') \
                    for label in range(len(class_names))
                ]
                if add_bgd:
                    arbitary_concepts.append("A background in coco.")
            else:
                arbitary_concepts = class_names
            
            input_ids = []
            attention_masks = []
            for txt in arbitary_concepts:
                tokens = self.tokenizer(
                    txt, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
                )
                tokens['input_ids'].squeeze_()
                tokens['attention_mask'].squeeze_()

                input_ids.append(tokens['input_ids'])
                attention_masks.append(tokens['attention_mask'])

            arbitary_tokens = torch.stack(input_ids)
            arbitary_attention_masks = torch.stack(attention_masks)

            text_emb = self.forward_language((arbitary_tokens , arbitary_attention_masks ), norm=norm)
            setattr(self, '{}_text_embeddings'.format(name), text_emb)
        else:
            with torch.no_grad():
                def extract_mean_emb(txts):
                    tokens = self.tokenizer(
                        txts, padding='max_length', truncation=True, 
                        max_length=self.max_token_num, return_tensors='pt'
                    )
                    # Move tokens to correct device
                    tokens = {k: v.to(self.device) for k, v in tokens.items()}
                    clss_embedding = self.forward_language(
                        (tokens['input_ids'], tokens['attention_mask']), 
                        norm=norm
                    )
                    clss_embedding = clss_embedding.mean(dim=0)
                    clss_embedding /= clss_embedding.norm()
                    return clss_embedding

                templates = get_prompt_templates()
                clss_embeddings = []
                if prompt:
                    for clss in class_names:
                        txts = [template.format(clss.replace('-other','').replace('-merged','').replace('-stuff','')) 
                               for template in templates]
                        clss_embeddings.append(extract_mean_emb(txts))
                else:
                    for clss in class_names:
                        clss_embeddings.append(extract_mean_emb([clss]))

                if add_bgd:
                    txts = ["A background in coco."]
                    clss_embeddings.append(extract_mean_emb(txts))

                text_emb = torch.stack(clss_embeddings, dim=0)
                setattr(self, '{}_text_embeddings'.format(name), text_emb)

    def reset_text_embeddings(self, name='default'):
        pass

    def get_text_token_embeddings(self, txts, name='default', token=False, norm=False):
        if not token:
            tokens = self.tokenizer(
                txts, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
            )
            tokens = {key: value  for key, value in tokens.items()}
        else:
            tokens = txts
        token_emb, class_emb = self.forward_language_token((tokens['input_ids'], tokens['attention_mask']), norm=norm)
        ret = {"tokens": tokens,
                "token_emb": token_emb,
                "class_emb": class_emb,}
        setattr(self, '{}_token_embeddings'.format(name), ret)
        return ret

    def forward_language(self, texts, norm=True):
        if self.tokenizer_type == 'biomed-clip':
            with torch.no_grad():  # Disable gradient calculation
                outputs = self.biomed_encoder(*texts)
            # Extract the last hidden state
            x = outputs['last_hidden_state']
            x = x[:, 0]  # Get the [CLS] token's embeddings for all examples
        else:
            x = self.lang_encoder(*texts)
            x = x['last_hidden_state']

            if self.tokenizer_type == 'clip':
                x = x[torch.arange(x.size(0)), texts[0].argmax(dim=-1)]
            else:
                x = x[:, 0]

        x = x @ self.lang_proj
        if norm:
            x = x / (x.norm(dim=-1, keepdim=True) + 1e-7)
        return x
    
    def forward_language_token(self, texts, norm=False):
        if self.tokenizer_type == 'biomed-clip':
            with torch.no_grad():  # Disable gradient calculation
                outputs = self.biomed_encoder(*texts)
            # Extract the last hidden state
            token_x = outputs['last_hidden_state']
            class_x = token_x[:, 0]  # Get the [CLS] token's embeddings for all examples
        else:
            x = self.lang_encoder(*texts)
            token_x = x['last_hidden_state']

            if self.tokenizer_type == 'clip':
                class_x = token_x[torch.arange(token_x.size(0)), texts[0].argmax(dim=-1)]
            else:
                class_x = token_x[:, 0]

        class_x = class_x @ self.lang_proj
        token_x = token_x @ self.lang_proj

        if norm:
            class_x = class_x / (class_x.norm(dim=-1, keepdim=True) + 1e-7)
            token_x = token_x / (token_x.norm(dim=-1, keepdim=True) + 1e-7)

        return token_x, class_x
    
    def compute_similarity(self, v_emb, name='default', fake=False):
        if fake:
            return None
        v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
        t_emb = getattr(self, '{}_text_embeddings'.format(name))
        output = self.logit_scale.exp() * v_emb @ t_emb.unsqueeze(0).transpose(1, 2)
        return output


@register_model
def get_language_model(cfg, **kwargs):
    return LanguageEncoder(cfg)