File size: 8,613 Bytes
814a594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou ([email protected])
# --------------------------------------------------------
import torch
from torch import nn
from torch.nn import functional as F
from timm.models.layers import trunc_normal_
from .build import register_model
from ..utils import configurable
from .LangEncoder import build_tokenizer, build_lang_encoder
from utilities.prompt_engineering import prompt_engineering, get_prompt_templates
from transformers import AutoTokenizer, AutoModel
class LanguageEncoder(nn.Module):
@configurable
def __init__(
self,
tokenizer,
tokenizer_type,
lang_encoder,
lang_projection,
max_token_num,
queue_operator,
):
super().__init__()
# seg
self.tokenizer = tokenizer
self.tokenizer_type = tokenizer_type
self.lang_encoder = lang_encoder
self.lang_proj = lang_projection
self.max_token_num = max_token_num
self.logit_scale = nn.Parameter(torch.ones([]))
self.device = lang_projection.device
# captioning & retrieval
for key, value in queue_operator.items():
self.register_buffer(key, value)
self.biomed_encoder = AutoModel.from_pretrained("microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext")
self.biomed_encoder.to(self.device)
@classmethod
def from_config(cls, cfg):
# build up text encoder for seg
tokenizer = build_tokenizer(cfg['MODEL']['TEXT'])
tokenizer_type = cfg['MODEL']['TEXT']['TOKENIZER']
lang_encoder = build_lang_encoder(cfg['MODEL']['TEXT'], tokenizer, cfg['VERBOSE'])
max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
dim_lang = cfg['MODEL']['TEXT']['WIDTH']
dim_projection = cfg['MODEL']['DIM_PROJ']
lang_projection = nn.Parameter(torch.empty(dim_lang, dim_projection))
trunc_normal_(lang_projection, std=.02)
# tested not working better
queue_operator = {}
return {
"tokenizer": tokenizer,
"tokenizer_type": tokenizer_type,
"lang_encoder": lang_encoder,
"lang_projection": lang_projection,
"max_token_num": max_token_num,
"queue_operator": queue_operator,
}
def get_text_embeddings(self, class_names, name='default', is_eval=False, add_bgd=False, prompt=True, norm=True, store_buffer=None):
if not is_eval:
if prompt:
# randomly sample one template
arbitary_concepts = [
prompt_engineering(class_names[label].replace('-other','').replace('-merged','').replace('-stuff',''), topk=10000, suffix='.') \
for label in range(len(class_names))
]
if add_bgd:
arbitary_concepts.append("A background in coco.")
else:
arbitary_concepts = class_names
input_ids = []
attention_masks = []
for txt in arbitary_concepts:
tokens = self.tokenizer(
txt, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
)
tokens['input_ids'].squeeze_()
tokens['attention_mask'].squeeze_()
input_ids.append(tokens['input_ids'])
attention_masks.append(tokens['attention_mask'])
arbitary_tokens = torch.stack(input_ids)
arbitary_attention_masks = torch.stack(attention_masks)
text_emb = self.forward_language((arbitary_tokens , arbitary_attention_masks ), norm=norm)
setattr(self, '{}_text_embeddings'.format(name), text_emb)
else:
with torch.no_grad():
def extract_mean_emb(txts):
tokens = self.tokenizer(
txts, padding='max_length', truncation=True,
max_length=self.max_token_num, return_tensors='pt'
)
# Move tokens to correct device
tokens = {k: v.to(self.device) for k, v in tokens.items()}
clss_embedding = self.forward_language(
(tokens['input_ids'], tokens['attention_mask']),
norm=norm
)
clss_embedding = clss_embedding.mean(dim=0)
clss_embedding /= clss_embedding.norm()
return clss_embedding
templates = get_prompt_templates()
clss_embeddings = []
if prompt:
for clss in class_names:
txts = [template.format(clss.replace('-other','').replace('-merged','').replace('-stuff',''))
for template in templates]
clss_embeddings.append(extract_mean_emb(txts))
else:
for clss in class_names:
clss_embeddings.append(extract_mean_emb([clss]))
if add_bgd:
txts = ["A background in coco."]
clss_embeddings.append(extract_mean_emb(txts))
text_emb = torch.stack(clss_embeddings, dim=0)
setattr(self, '{}_text_embeddings'.format(name), text_emb)
def reset_text_embeddings(self, name='default'):
pass
def get_text_token_embeddings(self, txts, name='default', token=False, norm=False):
if not token:
tokens = self.tokenizer(
txts, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
)
tokens = {key: value for key, value in tokens.items()}
else:
tokens = txts
token_emb, class_emb = self.forward_language_token((tokens['input_ids'], tokens['attention_mask']), norm=norm)
ret = {"tokens": tokens,
"token_emb": token_emb,
"class_emb": class_emb,}
setattr(self, '{}_token_embeddings'.format(name), ret)
return ret
def forward_language(self, texts, norm=True):
if self.tokenizer_type == 'biomed-clip':
with torch.no_grad(): # Disable gradient calculation
outputs = self.biomed_encoder(*texts)
# Extract the last hidden state
x = outputs['last_hidden_state']
x = x[:, 0] # Get the [CLS] token's embeddings for all examples
else:
x = self.lang_encoder(*texts)
x = x['last_hidden_state']
if self.tokenizer_type == 'clip':
x = x[torch.arange(x.size(0)), texts[0].argmax(dim=-1)]
else:
x = x[:, 0]
x = x @ self.lang_proj
if norm:
x = x / (x.norm(dim=-1, keepdim=True) + 1e-7)
return x
def forward_language_token(self, texts, norm=False):
if self.tokenizer_type == 'biomed-clip':
with torch.no_grad(): # Disable gradient calculation
outputs = self.biomed_encoder(*texts)
# Extract the last hidden state
token_x = outputs['last_hidden_state']
class_x = token_x[:, 0] # Get the [CLS] token's embeddings for all examples
else:
x = self.lang_encoder(*texts)
token_x = x['last_hidden_state']
if self.tokenizer_type == 'clip':
class_x = token_x[torch.arange(token_x.size(0)), texts[0].argmax(dim=-1)]
else:
class_x = token_x[:, 0]
class_x = class_x @ self.lang_proj
token_x = token_x @ self.lang_proj
if norm:
class_x = class_x / (class_x.norm(dim=-1, keepdim=True) + 1e-7)
token_x = token_x / (token_x.norm(dim=-1, keepdim=True) + 1e-7)
return token_x, class_x
def compute_similarity(self, v_emb, name='default', fake=False):
if fake:
return None
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
t_emb = getattr(self, '{}_text_embeddings'.format(name))
output = self.logit_scale.exp() * v_emb @ t_emb.unsqueeze(0).transpose(1, 2)
return output
@register_model
def get_language_model(cfg, **kwargs):
return LanguageEncoder(cfg) |