File size: 9,119 Bytes
814a594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import gradio as gr
import os
from typing import Tuple, Optional
import os
import shutil
import sys
from pathlib import Path
import cv2
import gradio as gr
import numpy as np
import spaces
# import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm
import sys
from pathlib import Path
from huggingface_hub import login
# from dotenv import load_dotenv
# For Hugging Face Spaces, secrets are automatically loaded as environment variables
token = os.getenv("HF_TOKEN")
if token:
login(token=token)
# Clear Hugging Face cache
# cache_dirs = [
# "/home/user/.cache/huggingface/",
# "/home/user/.cache/torch/",
# "/home/user/.cache/pip/"
# ]
# for cache_dir in cache_dirs:
# if os.path.exists(cache_dir):
# print(f"Clearing cache: {cache_dir}")
# shutil.rmtree(cache_dir, ignore_errors=True)
# Add the current directory to Python path
current_dir = Path(__file__).parent
sys.path.append(str(current_dir))
# sys.path.append("./BiomedParse/")
# BIOMEDPARSE_PATH = Path(__file__).parent / "BiomedParse"
# sys.path.append(str(BIOMEDPARSE_PATH))
# sys.path.append(str(BIOMEDPARSE_PATH / "BiomedParse")) # Add the inner BiomedParse directory
from modeling.BaseModel import BaseModel
from modeling import build_model
from utilities.arguments import load_opt_from_config_files
from utilities.constants import BIOMED_CLASSES
from inference_utils.inference import interactive_infer_image
from inference_utils.output_processing import check_mask_stats
from inference_utils.processing_utils import read_rgb
import spaces
# breakpoint()
MARKDOWN = """
# <div style="text-align: center; font-size: 2.5em;">ሀ<span style="color: #32CD32;">A</span>ኪ<span style="color: #FFD700;">i</span>ም <sup>AI</sup></div>
<div>
<a href="https://cyberbrainai.com/">
<img src="https://cyberbrainai.com/assets/logo.svg" alt="CyberBrain AI" style="display:inline-block; width:50px; height:50px;">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="ድinቅneሽ" style="display:inline-block;">
</a>
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
</a>
</div>
This demo integrates BiomedParse, a foundation model for joint segmentation, detection, and recognition across 9 biomedical imaging modalities. The model supports:
- Segmentation/Detection/Recognition across multiple modalities (CT, MRI, X-Ray, etc.)
- Text-prompted object detection
- Recognition of anatomical structures and abnormalities
"""
IMAGE_PROCESSING_EXAMPLES = [
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/T0011.jpg",
"Optic disc in retinal Fundus"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/Part_3_226_pathology_breast.png",
"optic disc, optic cup"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/covid_1585.png",
"COVID-19 infection in chest X-Ray"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/TCGA_HT_7856_19950831_8_MRI-FLAIR_brain.png",
"Lower-grade glioma in brain MRI"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/LIDC-IDRI-0140_143_280_CT_lung.png",
"COVID-19 infection in chest CT"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/144DME_as_F.jpeg",
"Cystoid macular edema in retinal OCT"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/Part_1_516_pathology_breast.png",
"Glandular structure in colon Pathology"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/ISIC_0015551.jpg",
"Melanoma in skin Dermoscopy"],
["BiomedParse Segmentation",
"https://raw.githubusercontent.com/microsoft/BiomedParse/main/examples/C3_EndoCV2021_00462.jpg",
"Neoplastic polyp in colon Endoscope"]
]
BIOMEDPARSE_MODES = {
"CT": ["abdomen", "colon", "liver", "lung", "pelvis"],
"MRI": ["brain", "heart", "prostate", "abdomen"],
"MRI-FLAIR": ["brain"],
"MRI-T1-Gd": ["brain"],
"MRI-T2": ["prostate"],
"OCT": ["retinal"],
"X-Ray": ["chest"],
"Dermoscopy": ["skin"],
"Endoscope": ["colon"],
"Fundus": ["retinal"],
"Pathology": ["bladder", "breast", "cervix", "colon", "esophagus", "kidney",
"liver", "ovarian", "prostate", "stomach", "testis", "thyroid", "uterus"],
"Ultrasound": ["breast", "heart", "transperineal"]
}
IMAGE_INFERENCE_MODES = [
"BIOMED SEGMENTATION",
"BIOMED DETECTION",
"BIOMED RECOGNITION",
"BIOMED SEGMENTATION + DETECTION",
"BIOMED SEGMENTATION + RECOGNITION",
"BIOMED DETECTION + RECOGNITION",
"BIOMED SEGMENTATION + DETECTION + RECOGNITION"
]
def on_mode_dropdown_change(selected_mode):
if selected_mode in IMAGE_INFERENCE_MODES:
# Show modality dropdown and hide other inputs initially
return [
gr.Dropdown(visible=True, choices=list(BIOMEDPARSE_MODES.keys()), label="Modality"),
gr.Dropdown(visible=True, label="Anatomical Site"),
gr.Textbox(visible=False),
gr.Textbox(visible=False)
]
else:
# Original behavior for other modes
return [
gr.Dropdown(visible=False),
gr.Dropdown(visible=False),
gr.Textbox(visible=True),
gr.Textbox(visible=(selected_mode == None))
]
def on_modality_change(modality):
if modality:
return gr.Dropdown(choices=BIOMEDPARSE_MODES[modality], visible=True)
return gr.Dropdown(visible=False)
def initialize_model():
opt = load_opt_from_config_files(["configs/biomedparse_inference.yaml"])
pretrained_pth = 'hf_hub:microsoft/BiomedParse'
opt['device'] = 'cuda' if torch.cuda.is_available() else 'cpu'
model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval()
with torch.no_grad():
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(
BIOMED_CLASSES + ["background"], is_eval=True
)
return model
model = initialize_model()
# Utility functions
@spaces.GPU
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process_image(image_path, text_prompts, modality):
image = read_rgb(image_path)
text_prompts = [prompt.strip() for prompt in text_prompts.split(',')]
# Run inference
pred_masks = interactive_infer_image(model, Image.fromarray(image), text_prompts)
# Prepare outputs
results = []
dice_scores = []
p_values = []
for i, prompt in enumerate(text_prompts):
# Calculate p-value for the selected modality
print("PROMPT: ", prompt, flush=True)
p_value = check_mask_stats(image, pred_masks[i] * 255, modality, prompt)
p_values.append(f"P-value for '{prompt}' ({modality}): {p_value:.4f}")
# Overlay predictions on the image
overlay_image = image.copy()
overlay_image[pred_masks[i] > 0.5] = [255, 0, 0] # Highlight predictions in red
results.append(overlay_image)
return results, p_values
# Define Gradio interface
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Input Image")
prompts_input = gr.Textbox(lines=2, placeholder="Enter prompts separated by commas...", label="Prompts")
modality_dropdown = gr.Dropdown(
choices=BIOMEDPARSE_MODES.keys(),
value=BIOMEDPARSE_MODES.keys()[0],
label="Modality"
)
submit_btn = gr.Button("Submit")
with gr.Column():
output_gallery = gr.Gallery(label="Predicted Masks")
pvalue_output = gr.Textbox(label="P-values", interactive=False)
submit_btn.click(
process_image,
inputs=[image_input, prompts_input, modality_dropdown],
outputs=[output_gallery, pvalue_output]
)
with gr.Row():
gr.Examples(
fn=process_image,
examples=IMAGE_PROCESSING_EXAMPLES,
inputs=[
image_processing_mode_dropdown_component,
image_processing_image_input_component,
image_processing_text_input_component
],
outputs=[
image_processing_image_output_component,
image_processing_text_output_component
],
run_on_click=True
)
# Launch the app
demo.launch() |