Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,29 +7,16 @@ import io
|
|
7 |
from PIL import Image
|
8 |
import pandas as pd
|
9 |
import pdfplumber
|
|
|
10 |
|
11 |
def parse_pdf(pdf_file, output_format, progress=gr.Progress()):
|
12 |
-
"""
|
13 |
-
Parses a PDF file, extracts text, tables, and images, and formats the output.
|
14 |
-
|
15 |
-
Args:
|
16 |
-
pdf_file: Path to the uploaded PDF file.
|
17 |
-
output_format: Desired output format ("JSON", "Markdown", or "HTML").
|
18 |
-
progress: Gradio Progress object for displaying progress.
|
19 |
-
|
20 |
-
Returns:
|
21 |
-
tuple: Extracted text and download data in the specified format.
|
22 |
-
Returns an empty string and None if there is an error.
|
23 |
-
"""
|
24 |
try:
|
25 |
with open(pdf_file, 'rb') as file:
|
26 |
text = ""
|
27 |
tables = []
|
28 |
images = []
|
29 |
|
30 |
-
# Iterate directly over pages
|
31 |
for page in extract_pages(file):
|
32 |
-
# progress(i / len(pages)) # Update progress bar (if you still want to use a progress bar, you'll need to determine the total number of pages beforehand)
|
33 |
for element in page:
|
34 |
if isinstance(element, LTTextBoxHorizontal):
|
35 |
text += element.get_text()
|
@@ -52,64 +39,56 @@ def parse_pdf(pdf_file, output_format, progress=gr.Progress()):
|
|
52 |
except Exception as e:
|
53 |
print(f"Error extracting image: {e}")
|
54 |
|
55 |
-
# Enhanced table extraction using pdfplumber
|
56 |
with pdfplumber.open(pdf_file) as pdf:
|
57 |
for page_num, page in enumerate(pdf.pages):
|
58 |
for table in page.extract_tables():
|
59 |
-
# Handle potential duplicate columns
|
60 |
if len(table) > 0 and len(set(table[0])) != len(table[0]):
|
61 |
-
# If duplicate columns exist, try to create unique column names
|
62 |
unique_columns = []
|
63 |
for col in table[0]:
|
64 |
if col in unique_columns:
|
65 |
-
col = f"{col}_{unique_columns.count(col)}"
|
66 |
unique_columns.append(col)
|
67 |
df = pd.DataFrame(table[1:], columns=unique_columns)
|
68 |
else:
|
69 |
df = pd.DataFrame(table[1:], columns=table[0] if table[0] else None)
|
70 |
tables.append(df)
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
table.to_dict(orient='records')
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
html_text +=
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
image_path = os.path.join(os.getcwd(), image["filename"])
|
109 |
-
html_text += f'<img src="{image_path}" alt="Image"><br>\n'
|
110 |
-
|
111 |
-
download_data = html_text.encode("utf-8") # Encode for HTML download
|
112 |
-
return text, download_data
|
113 |
|
114 |
except Exception as main_e:
|
115 |
print(f"A main error occurred: {main_e}")
|
@@ -117,7 +96,7 @@ def parse_pdf(pdf_file, output_format, progress=gr.Progress()):
|
|
117 |
|
118 |
iface = gr.Interface(
|
119 |
fn=parse_pdf,
|
120 |
-
inputs=["file", gr.Dropdown(["JSON", "Markdown", "HTML"])],
|
121 |
outputs=[
|
122 |
gr.Text(label="Output Text"),
|
123 |
gr.File(label="Download Output")
|
@@ -127,4 +106,4 @@ iface = gr.Interface(
|
|
127 |
)
|
128 |
|
129 |
if __name__ == "__main__":
|
130 |
-
iface.launch(share=True)
|
|
|
7 |
from PIL import Image
|
8 |
import pandas as pd
|
9 |
import pdfplumber
|
10 |
+
import tempfile # Import tempfile
|
11 |
|
12 |
def parse_pdf(pdf_file, output_format, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
try:
|
14 |
with open(pdf_file, 'rb') as file:
|
15 |
text = ""
|
16 |
tables = []
|
17 |
images = []
|
18 |
|
|
|
19 |
for page in extract_pages(file):
|
|
|
20 |
for element in page:
|
21 |
if isinstance(element, LTTextBoxHorizontal):
|
22 |
text += element.get_text()
|
|
|
39 |
except Exception as e:
|
40 |
print(f"Error extracting image: {e}")
|
41 |
|
|
|
42 |
with pdfplumber.open(pdf_file) as pdf:
|
43 |
for page_num, page in enumerate(pdf.pages):
|
44 |
for table in page.extract_tables():
|
|
|
45 |
if len(table) > 0 and len(set(table[0])) != len(table[0]):
|
|
|
46 |
unique_columns = []
|
47 |
for col in table[0]:
|
48 |
if col in unique_columns:
|
49 |
+
col = f"{col}_{unique_columns.count(col)}"
|
50 |
unique_columns.append(col)
|
51 |
df = pd.DataFrame(table[1:], columns=unique_columns)
|
52 |
else:
|
53 |
df = pd.DataFrame(table[1:], columns=table[0] if table[0] else None)
|
54 |
tables.append(df)
|
55 |
|
56 |
+
# Use a temporary file for the download
|
57 |
+
with tempfile.NamedTemporaryFile(mode="w+b", delete=False, suffix="." + output_format.lower()) as tmp:
|
58 |
+
if output_format == "JSON":
|
59 |
+
json_data = {
|
60 |
+
"text": text,
|
61 |
+
"tables": [table.to_dict(orient='records') for table in tables if not table.columns.duplicated().any()],
|
62 |
+
"images": images
|
63 |
+
}
|
64 |
+
json.dump(json_data, tmp, indent=4)
|
65 |
+
download_path = tmp.name
|
66 |
+
elif output_format == "Markdown":
|
67 |
+
markdown_text = f"# Extracted Text\n\n{text}\n\n# Tables\n"
|
68 |
+
for i, table in enumerate(tables):
|
69 |
+
if not table.columns.duplicated().any():
|
70 |
+
markdown_text += f"## Table {i+1}\n"
|
71 |
+
markdown_text += table.to_markdown(index=False) + "\n\n"
|
72 |
+
markdown_text += "\n\n# Images\n\n"
|
73 |
+
for image in images:
|
74 |
+
image_path = os.path.join(os.getcwd(), image["filename"])
|
75 |
+
markdown_text += f'\n'
|
76 |
+
tmp.write(markdown_text.encode('utf-8'))
|
77 |
+
download_path = tmp.name
|
78 |
+
elif output_format == "HTML":
|
79 |
+
html_text = f"<p>{text}</p>\n\n<h2>Tables</h2>\n"
|
80 |
+
for i, table in enumerate(tables):
|
81 |
+
if not table.columns.duplicated().any():
|
82 |
+
html_text += f"<h2>Table {i+1}</h2>\n"
|
83 |
+
html_text += table.to_html() + "<br>"
|
84 |
+
html_text += "\n\n<h2>Images</h2>\n\n"
|
85 |
+
for image in images:
|
86 |
+
image_path = os.path.join(os.getcwd(), image["filename"])
|
87 |
+
html_text += f'<img src="{image_path}" alt="Image"><br>\n'
|
88 |
+
tmp.write(html_text.encode('utf-8'))
|
89 |
+
download_path = tmp.name
|
90 |
+
|
91 |
+
return text, download_path
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
except Exception as main_e:
|
94 |
print(f"A main error occurred: {main_e}")
|
|
|
96 |
|
97 |
iface = gr.Interface(
|
98 |
fn=parse_pdf,
|
99 |
+
inputs=["file", gr.Dropdown(["JSON", "Markdown", "HTML"])],
|
100 |
outputs=[
|
101 |
gr.Text(label="Output Text"),
|
102 |
gr.File(label="Download Output")
|
|
|
106 |
)
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
+
iface.launch(share=True)
|