Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,27 +2,83 @@ import json
|
|
| 2 |
import gradio as gr
|
| 3 |
from pdfminer.high_level import extract_pages, extract_text
|
| 4 |
from pdfminer.layout import LTTextBoxHorizontal, LTFigure, LTImage
|
| 5 |
-
import os
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def parse_pdf(pdf_file, output_format):
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Convert extracted data to desired format and populate download_data
|
| 11 |
if output_format == "JSON":
|
| 12 |
json_data = {
|
| 13 |
"text": text,
|
| 14 |
-
"tables":
|
| 15 |
-
"images": images
|
| 16 |
}
|
| 17 |
-
download_data = json.dumps(json_data)
|
| 18 |
|
| 19 |
elif output_format == "Markdown":
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
download_data = markdown_text
|
| 22 |
|
| 23 |
elif output_format == "HTML":
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
return text, download_data
|
| 28 |
|
|
@@ -38,4 +94,4 @@ iface = gr.Interface(
|
|
| 38 |
)
|
| 39 |
|
| 40 |
if __name__ == "__main__":
|
| 41 |
-
iface.launch(share=False)
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from pdfminer.high_level import extract_pages, extract_text
|
| 4 |
from pdfminer.layout import LTTextBoxHorizontal, LTFigure, LTImage
|
| 5 |
+
import os
|
| 6 |
+
import io
|
| 7 |
+
from PIL import Image
|
| 8 |
|
| 9 |
def parse_pdf(pdf_file, output_format):
|
| 10 |
+
with open(pdf_file, 'rb') as file:
|
| 11 |
+
pages = extract_pages(file)
|
| 12 |
+
|
| 13 |
+
text = ""
|
| 14 |
+
tables = []
|
| 15 |
+
images = []
|
| 16 |
+
|
| 17 |
+
for page in pages:
|
| 18 |
+
for element in page:
|
| 19 |
+
if isinstance(element, LTTextBoxHorizontal):
|
| 20 |
+
text += element.get_text()
|
| 21 |
+
elif isinstance(element, (LTFigure, LTImage)):
|
| 22 |
+
# Extract image data
|
| 23 |
+
if hasattr(element, 'stream'):
|
| 24 |
+
image_data = element.stream.read()
|
| 25 |
+
image = Image.open(io.BytesIO(image_data))
|
| 26 |
+
image_filename = f"extracted_image_{len(images)}.png"
|
| 27 |
+
image.save(image_filename)
|
| 28 |
+
images.append({"filename": image_filename})
|
| 29 |
+
else:
|
| 30 |
+
# Handle LTFigure (potentially nested LTImage)
|
| 31 |
+
for child in element:
|
| 32 |
+
if isinstance(child, LTImage):
|
| 33 |
+
image_data = child.stream.read()
|
| 34 |
+
image = Image.open(io.BytesIO(image_data))
|
| 35 |
+
image_filename = f"extracted_image_{len(images)}.png"
|
| 36 |
+
image.save(image_filename)
|
| 37 |
+
images.append({"filename": image_filename})
|
| 38 |
+
# You can add logic here to handle other child elements within LTFigure
|
| 39 |
+
|
| 40 |
+
# Implement table extraction logic using Camelot
|
| 41 |
+
import camelot
|
| 42 |
+
tables = camelot.read_pdf(pdf_file)
|
| 43 |
|
| 44 |
# Convert extracted data to desired format and populate download_data
|
| 45 |
if output_format == "JSON":
|
| 46 |
json_data = {
|
| 47 |
"text": text,
|
| 48 |
+
"tables": [table.df.to_dict() for table in tables],
|
| 49 |
+
"images": images
|
| 50 |
}
|
| 51 |
+
download_data = json.dumps(json_data)
|
| 52 |
|
| 53 |
elif output_format == "Markdown":
|
| 54 |
+
markdown_text = f"# Extracted Text\n\n{text}\n\n# Tables\n"
|
| 55 |
+
for table in tables:
|
| 56 |
+
markdown_text += table.df.to_markdown(index=False) + "\n\n"
|
| 57 |
+
|
| 58 |
+
# Image embedding in Markdown (using relative paths)
|
| 59 |
+
image_tags = []
|
| 60 |
+
for image in images:
|
| 61 |
+
image_path = os.path.join(os.getcwd(), image["filename"]) # Replace with your path logic
|
| 62 |
+
image_tags.append(f'')
|
| 63 |
+
|
| 64 |
+
markdown_text += "\n\n# Images\n\n" + "\n".join(image_tags)
|
| 65 |
+
|
| 66 |
download_data = markdown_text
|
| 67 |
|
| 68 |
elif output_format == "HTML":
|
| 69 |
+
html_text = f"<p>{text}</p>\n\n<h2>Tables</h2>\n"
|
| 70 |
+
for table in tables:
|
| 71 |
+
html_text += table.df.to_html() + "<br>"
|
| 72 |
+
|
| 73 |
+
# Image embedding in HTML (using relative paths)
|
| 74 |
+
image_tags = []
|
| 75 |
+
for image in images:
|
| 76 |
+
image_path = os.path.join(os.getcwd(), image["filename"]) # Replace with your path logic
|
| 77 |
+
image_tags.append(f'<img src="{image_path}" alt="Image {len(image_tags) + 1}">')
|
| 78 |
+
|
| 79 |
+
html_text += "\n\n<h2>Images</h2>\n\n" + "\n".join(image_tags)
|
| 80 |
+
|
| 81 |
+
download_data = html_text.encode("utf-8") # Encode for HTML download
|
| 82 |
|
| 83 |
return text, download_data
|
| 84 |
|
|
|
|
| 94 |
)
|
| 95 |
|
| 96 |
if __name__ == "__main__":
|
| 97 |
+
iface.launch(share=False)
|