File size: 2,352 Bytes
b4b5bbe
 
 
919f74f
f3515e2
12e4f3d
 
 
 
 
 
b4b5bbe
 
 
b2971fd
b4b5bbe
5ebff26
b4b5bbe
 
 
 
 
 
 
 
 
 
5ebff26
b4b5bbe
 
 
 
 
 
12e4f3d
b4b5bbe
 
5ebff26
12e4f3d
 
b4b5bbe
 
6992e9b
b4b5bbe
 
6992e9b
 
 
b4b5bbe
f3515e2
b4b5bbe
8b0be64
b4b5bbe
 
 
 
 
f3515e2
 
b4b5bbe
8b0be64
b4b5bbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import PyPDF2
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextBoxHorizontal, LTFigure
import gradio as gr

def process_figure(fig):
    # Replace this with your actual figure processing logic (e.g., save image, get URL)
    # This is a placeholder for demonstration purposes
    processed_image_url = "https://via.placeholder.com/150"  # Placeholder image URL
    return processed_image_url

def parse_pdf(pdf_file, output_format):
    with open(pdf_file, 'rb') as file:
        pages = extract_pages(file)

        text = ""
        tables = []  # Placeholder for tables (implementation needed)
        figures = []

        for page in pages:
            for element in page:
                if isinstance(element, LTTextBoxHorizontal):
                    text += element.get_text()
                elif isinstance(element, LTFigure):
                    figures.append(element)

        # Extract tables (more advanced techniques might be needed)
        # ... (Implement table extraction logic here)

    if output_format == "JSON":
        # Replace this with your JSON conversion logic, including tables and figures
        json_output = {"text": text, "figures": figures}  # Placeholder for JSON conversion
        return json_output
    elif output_format == "Markdown":
        processed_image_url = ""
        markdown_output = f"# Extracted Text\n\n{text}\n\n# Figures\n"
        for fig in figures:
            # Process each figure (e.g., save as image)
            processed_image_url = process_figure(fig)
            markdown_output += f"\n![]({processed_image_url})"
        return markdown_output
    elif output_format == "HTML":
        processed_image_url = ""  # Define outside the loop for HTML output
        html_output = f"<p>{text}</p>\n"
        for fig in figures:
            # Process each figure (e.g., save as image)
            processed_image_url = process_figure(fig)
            html_output += f"<img src='{processed_image_url}' alt='Figure'>"
        return html_output

# Create the Gradio interface
iface = gr.Interface(
    fn=parse_pdf,
    inputs=["file", gr.Dropdown(["JSON", "Markdown", "HTML"])],
    outputs="text",
    title="PDF Parser",
    description="Parse a PDF and choose the output format."
)

# Launch the Gradio app
if __name__ == "__main__":
    iface.launch()