Spaces:
Sleeping
Sleeping
File size: 1,113 Bytes
e348efe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0)
from langchain.llms import HuggingFaceHub
flan_ul2 = HuggingFaceHub(repo_id="google/flan-ul2", model_kwargs={"temperature":0.1, "max_new_tokens":300})
from langchain.embeddings import HuggingFaceHubEmbeddings
embeddings = HuggingFaceHubEmbeddings()
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
def infer(pdf_doc):
loader = OnlinePDFLoader(pdf_doc)
documents = loader.load()
texts = text_splitter.split_documents(documents)
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
qa = RetrievalQA.from_chain_type(llm=flan_ul2, chain_type="stuff", retriever=retriever, return_source_documents=True)
query = "What is the title of this paper?"
result = qa({"query": query})
return result
gr.Interface(fn=infer, inputs=[gr.Textbox(value="https://arxiv.org/pdf/2304.03757.pdf")], outputs=[gr.Textbox()]).launch() |