Spaces:
Sleeping
Sleeping
File size: 7,307 Bytes
3aa4656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import cv2
import numpy as np
import time
import os
#import datetime
#from datetime import datetime
#from PIL import Image
#from io import BytesIO
#from scipy import ndimage
#from pympler.tracker import SummaryTracker
#tracker = SummaryTracker()
INPUT_WIDTH = 640
INPUT_HEIGHT = 640
SCORE_THRESHOLD = 0.45
NMS_THRESHOLD = 0.45
CONFIDENCE_THRESHOLD = 0.5
# Text parameters.
FONT_FACE = cv2.FONT_HERSHEY_SIMPLEX
FONT_SCALE = 0.7
THICKNESS = 1
# Colors.
BLACK = (0,0,0)
BLUE = (255,178,50)
YELLOW = (0,255,255)
classesFile = "coco.names"
classes = None
#frame = cv2.imread('1.jpg')
# Give the weight files to the model and load the network using them.
roi_detection_modelWeights = "doors.onnx"
roi_detection_model = cv2.dnn.readNet(roi_detection_modelWeights)
roi_detection_model.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
roi_detection_model.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
#num_rec_modelWeights = "chan_3_32_num.onnx" #ch first
#num_rec_model = cv2.dnn.readNet(num_rec_modelWeights)
def draw_label(im, label, x, y):
"""Draw text onto image at location."""
# Get text size.
text_size = cv2.getTextSize(label, FONT_FACE, FONT_SCALE, THICKNESS)
dim, baseline = text_size[0], text_size[1]
# Use text size to create a BLACK rectangle.
cv2.rectangle(im, (x,y), (x + dim[0], y + dim[1] + baseline), (0,0,0), cv2.FILLED);
# Display text inside the rectangle.
cv2.putText(im, label, (x, y + dim[1]), FONT_FACE, FONT_SCALE, YELLOW, THICKNESS, cv2.LINE_AA)
def pre_process(input_image, net,w,h):
# Create a 4D blob from a frame.
#print(input_image.shape)
blob = cv2.dnn.blobFromImage(input_image, scalefactor=1/255, size=(640, 640), mean=(0, 0, 0), swapRB=True, crop=False)
# blob = cv2.dnn.blobFromImage(input_image, 1/255, (w, h), [0,0,0], 1, crop=False)
# Sets the input to the network.
net.setInput(blob)
# Run the forward pass to get output of the output layers.
outputs = net.forward(net.getUnconnectedOutLayersNames())
del (blob)
return outputs
def get_xyxy(input_image, outputs,w,h):
# Lists to hold respective values while unwrapping.
class_ids = []
confidences = []
boxes = []
output_boxes=[]
# Rows.
rows = outputs[0].shape[1]
image_height, image_width = input_image.shape[:2]
# Resizing factor.
x_factor = image_width / w
y_factor = image_height / h
# Iterate through detections.
for r in range(rows):
row = outputs[0][0][r]
confidence = row[4]
# Discard bad detections and continue.
if confidence >= CONFIDENCE_THRESHOLD:
classes_scores = row[5:]
# Get the index of max class score.
class_id = np.argmax(classes_scores)
# Continue if the class score is above threshold.
if (classes_scores[class_id] > SCORE_THRESHOLD):
confidences.append(confidence)
class_ids.append(class_id)
cx, cy, w, h = row[0], row[1], row[2], row[3]
left = int((cx - w/2) * x_factor)
top = int((cy - h/2) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
box = np.array([left, top, width, height])
boxes.append(box)
# Perform non maximum suppression to eliminate redundant, overlapping boxes with lower confidences.
indices = cv2.dnn.NMSBoxes(boxes, confidences, CONFIDENCE_THRESHOLD, NMS_THRESHOLD)
for i in indices:
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
# Draw bounding box.
cv2.rectangle(input_image, (left, top), (left + width, top + height), BLUE, 3*THICKNESS)
# Class label.
#label = "{}:{:.2f}".format(classes[class_ids[i]], confidences[i])
# Draw label.
draw_label(input_image, 'x', left, top)
cv2.imwrite('image.jpg',input_image)
#turn xywh into xyxy
boxes[i][2]=left + width
boxes[i][3]=top + height
#check if the height is suitable
output_boxes.append(boxes[i])
#if height >20:
# output_boxes.append(boxes[i])
#del(input_image,)
return 1,output_boxes,input_image #boxes (left,top,width,height)
def roi_detection(input_image,roi_detection_model,w,h):
detections = pre_process(input_image, roi_detection_model,w,h) #detection results
_,bounding_boxes,input_image=get_xyxy(input_image, detections,w,h) # nms and return the valid bounding boxes
#print( bounding_boxes)
#date = datetime.now().strftime("%Y_%m_%d_%I_%M_%S_%p")
#cv2.imwrite(f"lic_{date}.jpg",image_with_bounding_boxes)
#cv2.imwrite('xf.jpg',image_with_bounding_boxes)
return bounding_boxes ,input_image
# def number_detection(input_image,ch_detection_model,w,h):
# #in_image_copy=input_image.copy()
# detections = pre_process(input_image.copy(), ch_detection_model,w,h) #detection results
# image_with_bounding_boxes,bounding_boxes=get_xyxy(input_image, detections,w,h)
# #date = datetime.now().strftime("%Y_%m_%d_%I_%M_%S_%p")
# #im_name=f"ch_{date}.jpg"
# #print(im_name)
# #cv2.imwrite(im_name,image_with_bounding_boxes)
# # cv2.imwrite('x1.jpg',image_with_bounding_boxes)
# return bounding_boxes
def main_func(img,):
scores='door :'
img = np.array(img)
#send_im_2_tg(img)
t1=time.time()
width_height_diff=img.shape[1]-img.shape[0] #padding
#print(width_height_diff,img.shape)
if width_height_diff>0:
img = cv2.copyMakeBorder(img, 0, width_height_diff, 0, 0, cv2.BORDER_CONSTANT, (0,0,0))
if width_height_diff<0:
img = cv2.copyMakeBorder(img, 0, 0, 0, int(-1*width_height_diff), cv2.BORDER_CONSTANT, (0,0,0))
cropped_licenses_array,input_image=roi_detection(img.copy(),roi_detection_model,640,640)
if len(cropped_licenses_array)!=0:
scores=scores+"True and detection time is "+str(time.time()-t1)
#print('total time in sec :',time.time()-t1)
#tracker.print_diff()
del(img)
#print(scores)
#return (scores+' time_sec : '+str(time.time()-t1))
return input_image ,scores
import gradio as gr
import cv2
import os
# im = gr.Image()
def greet(im):
im=cv2.imread(im)
im,number=main_func(im)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
#print(im)
#im=cv2.imread(im)
# im=os.path.join("/content/s.jpg")
return im ,number
inputs = gr.Image(type="filepath", label="Input Image")
outputs = [gr.Image(type="filepath", label="Output Image"),gr.Textbox()]
title = "YOLO-v5-Door detection for visually impaired people"
demo_app = gr.Interface(examples=["s.jpg"],
fn=greet,
inputs=inputs,
outputs=outputs,
title=title,
cache_examples=True,
)
demo_app.launch()
|