from transformers import AutoModelForMaskedLM , AutoTokenizer import torch model_path="bert-large-uncased" tokenizer = AutoTokenizer.from_pretrained(model_path) # load Prompting class from prompt import Prompting prompting= Prompting(model=model_path) prompt= ". Because it was "+ prompting.tokenizer.mask_token +"." def predict(text): THRESHOLD = prompting.compute_tokens_prob(prompt, token_list1=["good"], token_list2= ["bad"])[0].item() res=prompting.compute_tokens_prob(text+prompt, token_list1=["good"], token_list2= ["bad"]) if res[0] > THRESHOLD: return {"POSITIVE":res[0]} return {"NEGATIVE":res[0]}