Spaces:
Sleeping
Sleeping
[ref] remove audio and text endpoints
Browse files- tasks/audio.py +0 -88
- tasks/text.py +0 -92
tasks/audio.py
DELETED
|
@@ -1,88 +0,0 @@
|
|
| 1 |
-
from fastapi import APIRouter
|
| 2 |
-
from datetime import datetime
|
| 3 |
-
from datasets import load_dataset
|
| 4 |
-
from sklearn.metrics import accuracy_score
|
| 5 |
-
import random
|
| 6 |
-
import os
|
| 7 |
-
|
| 8 |
-
from .utils.evaluation import AudioEvaluationRequest
|
| 9 |
-
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 10 |
-
|
| 11 |
-
from dotenv import load_dotenv
|
| 12 |
-
load_dotenv()
|
| 13 |
-
|
| 14 |
-
router = APIRouter()
|
| 15 |
-
|
| 16 |
-
DESCRIPTION = "Random Baseline"
|
| 17 |
-
ROUTE = "/audio"
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
@router.post(ROUTE, tags=["Audio Task"],
|
| 22 |
-
description=DESCRIPTION)
|
| 23 |
-
async def evaluate_audio(request: AudioEvaluationRequest):
|
| 24 |
-
"""
|
| 25 |
-
Evaluate audio classification for rainforest sound detection.
|
| 26 |
-
|
| 27 |
-
Current Model: Random Baseline
|
| 28 |
-
- Makes random predictions from the label space (0-1)
|
| 29 |
-
- Used as a baseline for comparison
|
| 30 |
-
"""
|
| 31 |
-
# Get space info
|
| 32 |
-
username, space_url = get_space_info()
|
| 33 |
-
|
| 34 |
-
# Define the label mapping
|
| 35 |
-
LABEL_MAPPING = {
|
| 36 |
-
"chainsaw": 0,
|
| 37 |
-
"environment": 1
|
| 38 |
-
}
|
| 39 |
-
# Load and prepare the dataset
|
| 40 |
-
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
| 41 |
-
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
| 42 |
-
|
| 43 |
-
# Split dataset
|
| 44 |
-
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
| 45 |
-
test_dataset = train_test["test"]
|
| 46 |
-
|
| 47 |
-
# Start tracking emissions
|
| 48 |
-
tracker.start()
|
| 49 |
-
tracker.start_task("inference")
|
| 50 |
-
|
| 51 |
-
#--------------------------------------------------------------------------------------------
|
| 52 |
-
# YOUR MODEL INFERENCE CODE HERE
|
| 53 |
-
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 54 |
-
#--------------------------------------------------------------------------------------------
|
| 55 |
-
|
| 56 |
-
# Make random predictions (placeholder for actual model inference)
|
| 57 |
-
true_labels = test_dataset["label"]
|
| 58 |
-
predictions = [random.randint(0, 1) for _ in range(len(true_labels))]
|
| 59 |
-
|
| 60 |
-
#--------------------------------------------------------------------------------------------
|
| 61 |
-
# YOUR MODEL INFERENCE STOPS HERE
|
| 62 |
-
#--------------------------------------------------------------------------------------------
|
| 63 |
-
|
| 64 |
-
# Stop tracking emissions
|
| 65 |
-
emissions_data = tracker.stop_task()
|
| 66 |
-
|
| 67 |
-
# Calculate accuracy
|
| 68 |
-
accuracy = accuracy_score(true_labels, predictions)
|
| 69 |
-
|
| 70 |
-
# Prepare results dictionary
|
| 71 |
-
results = {
|
| 72 |
-
"username": username,
|
| 73 |
-
"space_url": space_url,
|
| 74 |
-
"submission_timestamp": datetime.now().isoformat(),
|
| 75 |
-
"model_description": DESCRIPTION,
|
| 76 |
-
"accuracy": float(accuracy),
|
| 77 |
-
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 78 |
-
"emissions_gco2eq": emissions_data.emissions * 1000,
|
| 79 |
-
"emissions_data": clean_emissions_data(emissions_data),
|
| 80 |
-
"api_route": ROUTE,
|
| 81 |
-
"dataset_config": {
|
| 82 |
-
"dataset_name": request.dataset_name,
|
| 83 |
-
"test_size": request.test_size,
|
| 84 |
-
"test_seed": request.test_seed
|
| 85 |
-
}
|
| 86 |
-
}
|
| 87 |
-
|
| 88 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tasks/text.py
DELETED
|
@@ -1,92 +0,0 @@
|
|
| 1 |
-
from fastapi import APIRouter
|
| 2 |
-
from datetime import datetime
|
| 3 |
-
from datasets import load_dataset
|
| 4 |
-
from sklearn.metrics import accuracy_score
|
| 5 |
-
import random
|
| 6 |
-
|
| 7 |
-
from .utils.evaluation import TextEvaluationRequest
|
| 8 |
-
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 9 |
-
|
| 10 |
-
router = APIRouter()
|
| 11 |
-
|
| 12 |
-
DESCRIPTION = "Random Baseline"
|
| 13 |
-
ROUTE = "/text"
|
| 14 |
-
|
| 15 |
-
@router.post(ROUTE, tags=["Text Task"],
|
| 16 |
-
description=DESCRIPTION)
|
| 17 |
-
async def evaluate_text(request: TextEvaluationRequest):
|
| 18 |
-
"""
|
| 19 |
-
Evaluate text classification for climate disinformation detection.
|
| 20 |
-
|
| 21 |
-
Current Model: Random Baseline
|
| 22 |
-
- Makes random predictions from the label space (0-7)
|
| 23 |
-
- Used as a baseline for comparison
|
| 24 |
-
"""
|
| 25 |
-
# Get space info
|
| 26 |
-
username, space_url = get_space_info()
|
| 27 |
-
|
| 28 |
-
# Define the label mapping
|
| 29 |
-
LABEL_MAPPING = {
|
| 30 |
-
"0_not_relevant": 0,
|
| 31 |
-
"1_not_happening": 1,
|
| 32 |
-
"2_not_human": 2,
|
| 33 |
-
"3_not_bad": 3,
|
| 34 |
-
"4_solutions_harmful_unnecessary": 4,
|
| 35 |
-
"5_science_unreliable": 5,
|
| 36 |
-
"6_proponents_biased": 6,
|
| 37 |
-
"7_fossil_fuels_needed": 7
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
# Load and prepare the dataset
|
| 41 |
-
dataset = load_dataset(request.dataset_name)
|
| 42 |
-
|
| 43 |
-
# Convert string labels to integers
|
| 44 |
-
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
| 45 |
-
|
| 46 |
-
# Split dataset
|
| 47 |
-
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
| 48 |
-
test_dataset = train_test["test"]
|
| 49 |
-
|
| 50 |
-
# Start tracking emissions
|
| 51 |
-
tracker.start()
|
| 52 |
-
tracker.start_task("inference")
|
| 53 |
-
|
| 54 |
-
#--------------------------------------------------------------------------------------------
|
| 55 |
-
# YOUR MODEL INFERENCE CODE HERE
|
| 56 |
-
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 57 |
-
#--------------------------------------------------------------------------------------------
|
| 58 |
-
|
| 59 |
-
# Make random predictions (placeholder for actual model inference)
|
| 60 |
-
true_labels = test_dataset["label"]
|
| 61 |
-
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
| 62 |
-
|
| 63 |
-
#--------------------------------------------------------------------------------------------
|
| 64 |
-
# YOUR MODEL INFERENCE STOPS HERE
|
| 65 |
-
#--------------------------------------------------------------------------------------------
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
# Stop tracking emissions
|
| 69 |
-
emissions_data = tracker.stop_task()
|
| 70 |
-
|
| 71 |
-
# Calculate accuracy
|
| 72 |
-
accuracy = accuracy_score(true_labels, predictions)
|
| 73 |
-
|
| 74 |
-
# Prepare results dictionary
|
| 75 |
-
results = {
|
| 76 |
-
"username": username,
|
| 77 |
-
"space_url": space_url,
|
| 78 |
-
"submission_timestamp": datetime.now().isoformat(),
|
| 79 |
-
"model_description": DESCRIPTION,
|
| 80 |
-
"accuracy": float(accuracy),
|
| 81 |
-
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 82 |
-
"emissions_gco2eq": emissions_data.emissions * 1000,
|
| 83 |
-
"emissions_data": clean_emissions_data(emissions_data),
|
| 84 |
-
"api_route": ROUTE,
|
| 85 |
-
"dataset_config": {
|
| 86 |
-
"dataset_name": request.dataset_name,
|
| 87 |
-
"test_size": request.test_size,
|
| 88 |
-
"test_seed": request.test_seed
|
| 89 |
-
}
|
| 90 |
-
}
|
| 91 |
-
|
| 92 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|