import pickle from keras.models import load_model from keras.preprocessing.sequence import pad_sequences import numpy as np model = load_model("The_Verdict.h5") with open("tokenizer.pickle", "rb") as handle: tokenizer = pickle.load(handle) def prediction(t='',l=1): text = t sentence_length = l for repeat in range(sentence_length): token_text = tokenizer.texts_to_sequences([text]) padded_token_text = pad_sequences(token_text, maxlen = 230, padding = 'pre') pos = np.argmax(model.predict(padded_token_text)) for (word,index) in tokenizer.word_index.items(): if index == pos: text = text + " " + word return text import gradio as gr demo = gr.Interface(title = "The Verdict", examples = [['It had always been'], ['I found the couple at'],['She glanced out almost']], fn=prediction, inputs=[gr.Textbox(lines = 2, label = 'Query', placeholder='Enter Here', value=""), gr.Slider(1,100,step = 1, label = "How many Words to generate?", value = 1)], outputs=gr.Text(lines = 7, ), allow_flagging = 'never', theme=gr.themes.Base()) demo.launch(share = True)