File size: 1,210 Bytes
3e60b19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import pickle
from keras.models import load_model
from keras.preprocessing.sequence import pad_sequences
import numpy as np
model = load_model("The_Verdict.h5")
with open("tokenizer.pickle", "rb") as handle:
tokenizer = pickle.load(handle)
def prediction(t='',l=1):
text = t
sentence_length = l
for repeat in range(sentence_length):
token_text = tokenizer.texts_to_sequences([text])
padded_token_text = pad_sequences(token_text, maxlen = 230, padding = 'pre')
pos = np.argmax(model.predict(padded_token_text))
for (word,index) in tokenizer.word_index.items():
if index == pos:
text = text + " " + word
return text
import gradio as gr
demo = gr.Interface(title = "The Verdict",
examples = [['It had always been'], ['I found the couple at'],['She glanced out almost']],
fn=prediction,
inputs=[gr.Textbox(lines = 2, label = 'Query', placeholder='Enter Here', value=""),
gr.Slider(1,100,step = 1, label = "How many Words to generate?", value = 1)],
outputs=gr.Text(lines = 7, ), allow_flagging = 'never', theme=gr.themes.Base())
demo.launch(share = True) |