Spaces:
Sleeping
Sleeping
File size: 8,426 Bytes
d1df841 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import os
import numpy as np
from typing import List, Tuple
import torch
from glob import glob
from PIL import Image
from tqdm import tqdm
import matplotlib.pyplot as plt
from transformers import CLIPProcessor, CLIPModel
from sentence_transformers import SentenceTransformer
import sqlite3
from .vector_database import (
VectorDB,
ImageEmbeddingCollectionSchema,
TextEmbeddingCollectionSchema,
)
class ImageSearchModule:
def __init__(
self,
image_embeddings_dir: str,
original_images_dir: str,
sqlite_db_path: str = "image_tracker.db",
):
self.image_embeddings_dir = image_embeddings_dir
self.original_images_dir = original_images_dir
self.vector_db = VectorDB()
self.vector_db.create_collection(ImageEmbeddingCollectionSchema)
self.vector_db.create_collection(TextEmbeddingCollectionSchema)
self.clip_model = CLIPModel.from_pretrained(
"wkcn/TinyCLIP-ViT-8M-16-Text-3M-YFCC15M"
)
self.clip_preprocess = CLIPProcessor.from_pretrained(
"wkcn/TinyCLIP-ViT-8M-16-Text-3M-YFCC15M"
)
self.text_embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
self.sqlite_conn = sqlite3.connect(sqlite_db_path)
self._create_sqlite_table()
def _create_sqlite_table(self):
cursor = self.sqlite_conn.cursor()
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS added_images (
image_name TEXT PRIMARY KEY
)
"""
)
self.sqlite_conn.commit()
def add_images(self):
print("Adding images to vector databases")
cursor = self.sqlite_conn.cursor()
for filename in tqdm(os.listdir(self.image_embeddings_dir)):
if filename.startswith("resized_") and filename.endswith("_clip.npy"):
image_name = filename[
8:-9
] # Remove "resized_" prefix and "_clip.npy" suffix
cursor.execute(
"SELECT 1 FROM added_images WHERE image_name = ?", (image_name,)
)
if cursor.fetchone() is None:
clip_embedding_path = os.path.join(
self.image_embeddings_dir, filename
)
caption_embedding_path = os.path.join(
self.image_embeddings_dir, f"resized_{image_name}_caption.npy"
)
if os.path.exists(clip_embedding_path) and os.path.exists(
caption_embedding_path
):
with open(clip_embedding_path, "rb") as buffer:
image_embedding = np.frombuffer(
buffer.read(), dtype=np.float32
).reshape(512)
with open(caption_embedding_path, "rb") as buffer:
text_embedding = np.frombuffer(
buffer.read(), dtype=np.float32
).reshape(384)
if self.vector_db.insert_record(
ImageEmbeddingCollectionSchema.collection_name,
image_embedding,
image_name,
):
self.vector_db.insert_record(
TextEmbeddingCollectionSchema.collection_name,
text_embedding,
image_name,
)
cursor.execute(
"INSERT INTO added_images (image_name) VALUES (?)",
(image_name,),
)
self.sqlite_conn.commit()
print("Finished adding images to vector databases")
def search_by_image(
self, query_image_path: str, top_k: int = 5, similarity_threshold: float = 0.5
) -> List[Tuple[str, float]]:
if not os.path.exists(query_image_path):
print(f"Image file not found: {query_image_path}")
return []
try:
query_image = Image.open(query_image_path)
query_embedding = self._get_image_embedding(query_image)
results = self.vector_db.client.search(
collection_name=ImageEmbeddingCollectionSchema.collection_name,
data=[query_embedding],
output_fields=["filename"],
search_params={"metric_type": "COSINE"},
limit=top_k,
).pop()
return [(item["entity"]["filename"], item["distance"]) for item in results if item["distance"] >= similarity_threshold]
except Exception as e:
print(f"Error processing image: {e}")
return []
def search_by_text(
self, query_text: str, top_k: int = 5,similarity_threshold: float = 0.5
) -> List[Tuple[str, float]]:
if not query_text.strip():
print("Empty text query")
return []
try:
query_embedding = self._get_text_embedding(query_text)
results = self.vector_db.client.search(
collection_name=TextEmbeddingCollectionSchema.collection_name,
data=[query_embedding],
search_params={"metric_type": "COSINE"},
output_fields=["filename"],
limit=top_k,
).pop()
return [(item["entity"]["filename"], item["distance"]) for item in results if item["distance"] >= similarity_threshold]
except Exception as e:
print(f"Error processing text: {e}")
return []
def _get_image_embedding(self, image: Image.Image) -> np.ndarray:
with torch.no_grad():
image_input = self.clip_preprocess(images=image, return_tensors="pt")[
"pixel_values"
].to(self.clip_model.device)
image_features = self.clip_model.get_image_features(image_input)
return image_features.cpu().numpy().flatten()
def _get_text_embedding(self, text: str) -> np.ndarray:
with torch.no_grad():
embedding = self.text_embedding_model.encode(text).flatten()
return embedding
def display_results(self, results: List[Tuple[str, float]]):
if not results:
print("No results to display.")
return
num_images = min(5, len(results))
fig, axes = plt.subplots(1, num_images, figsize=(20, 4))
axes = [axes] if num_images == 1 else axes
for i, (image_name, similarity) in enumerate(results[:num_images]):
pattern = os.path.join(
self.original_images_dir, f"resized_{image_name}" + "*"
)
matching_files = glob(pattern)
if matching_files:
image_path = matching_files[0]
img = Image.open(image_path)
axes[i].imshow(img)
axes[i].set_title(f"Similarity: {similarity:.2f}")
axes[i].axis("off")
else:
print(f"No matching image found for {image_name}")
axes[i].text(0.5, 0.5, "Image not found", ha="center", va="center")
axes[i].axis("off")
plt.tight_layout()
plt.show()
def __del__(self):
if hasattr(self, "sqlite_conn"):
self.sqlite_conn.close()
if __name__ == "__main__":
from pathlib import Path
import requests
PROJECT_ROOT = Path(__file__).resolve().parent.parent
search = ImageSearchModule(
image_embeddings_dir=str(PROJECT_ROOT / "data/features"),
original_images_dir=str(PROJECT_ROOT / "data/images"),
)
search.add_images()
# Search by image
img_url = (
"https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"
)
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
raw_image.save(PROJECT_ROOT / "test.jpg")
image_results = search.search_by_image(str(PROJECT_ROOT / "test.jpg"))
print("Image search results:")
search.display_results(image_results)
# Search by text
text_results = search.search_by_text("Images of Nature")
print("Text search results:")
search.display_results(text_results) |