import os import gradio as gr from transformers import pipeline import spacy import subprocess import nltk from nltk.corpus import wordnet from gensim import downloader as api # Ensure necessary NLTK data is downloaded nltk.download('wordnet') nltk.download('omw-1.4') # Ensure the SpaCy model is installed try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") # Load a smaller Word2Vec model from Gensim's pre-trained models word_vectors = api.load("glove-wiki-gigaword-50") # Load the English AI detection pipeline using the Hello-SimpleAI model pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") # AI detection function using the Hello-SimpleAI/chatgpt-detector-roberta model def detect_ai_generated(text): res = pipeline_en(text)[0] label = res['label'] # "LABEL_0" or "LABEL_1" score = res['score'] * 100 # Convert probability to percentage # Map the model's label to human-readable label human_readable_label = "AI" if label == "LABEL_1" else "Human" # Return formatted string with label and percentage score return f"The content is {score:.2f}% {human_readable_label} Written", score # Function to get synonyms using NLTK WordNet def get_synonyms_nltk(word, pos): synsets = wordnet.synsets(word, pos=pos) if synsets: lemmas = synsets[0].lemmas() return [lemma.name() for lemma in lemmas] return [] # Function to capitalize the first letter of sentences and proper nouns def capitalize_sentences_and_nouns(text): doc = nlp(text) corrected_text = [] for sent in doc.sents: sentence = [] for token in sent: if token.i == sent.start: # First word of the sentence sentence.append(token.text.capitalize()) elif token.pos_ == "PROPN": # Proper noun sentence.append(token.text.capitalize()) else: sentence.append(token.text) corrected_text.append(' '.join(sentence)) return ' '.join(corrected_text) # Paraphrasing function using SpaCy and NLTK def paraphrase_with_spacy_nltk(text): doc = nlp(text) paraphrased_words = [] for token in doc: # Map SpaCy POS tags to WordNet POS tags pos = None if token.pos_ in {"NOUN"}: pos = wordnet.NOUN elif token.pos_ in {"VERB"}: pos = wordnet.VERB elif token.pos_ in {"ADJ"}: pos = wordnet.ADJ elif token.pos_ in {"ADV"}: pos = wordnet.ADV synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] # Replace with a synonym only if it makes sense if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): paraphrased_words.append(synonyms[0]) else: paraphrased_words.append(token.text) # Join the words back into a sentence paraphrased_sentence = ' '.join(paraphrased_words) # Capitalize sentences and proper nouns corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence) return corrected_text # Combined function: Paraphrase -> Capitalization def paraphrase_and_correct(text): # Step 1: Paraphrase the text paraphrased_text = paraphrase_with_spacy_nltk(text) # Step 2: Capitalize sentences and proper nouns final_text = capitalize_sentences_and_nouns(paraphrased_text) return final_text # Gradio interface definition with gr.Blocks() as interface: with gr.Row(): with gr.Column(): text_input = gr.Textbox(lines=5, label="Input Text") detect_button = gr.Button("AI Detection") paraphrase_button = gr.Button("Paraphrase & Correct") with gr.Column(): output_label = gr.Textbox(label="Predicted Label 🎃") output_prob = gr.Textbox(label="Probability (%)") detect_button.click(detect_ai_generated, inputs=text_input, outputs=[output_label, output_prob]) paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_label) # Launch the Gradio app interface.launch(debug=False)