# Import dependencies import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration import torch import nltk import random import string import spacy import subprocess # Import subprocess for downloading spaCy models # Download NLTK data (if not already downloaded) nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') # Download WordNet for enhanced synonym lookup # Download spaCy model if not already installed try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") # Check for GPU and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load AI Detector model and tokenizer from Hugging Face (DistilBERT) tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) # Load SRDdev Paraphrase model and tokenizer for humanizing text paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase") paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device) # AI detection function using DistilBERT with batch processing def detect_ai_generated(texts): inputs = tokenizer(texts, return_tensors="pt", truncation=True, max_length=512, padding=True).to(device) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.softmax(outputs.logits, dim=1)[:, 1].cpu().tolist() # List of AI-generated probabilities return probabilities # Synonym replacement using spaCy def replace_with_synonyms(text, probability=0.3): doc = nlp(text) new_text = [] for token in doc: if random.random() < probability and token.pos_ in ("NOUN", "VERB", "ADJ", "ADV"): synonyms = [synonym.lemma_ for synonym in token.vocab if synonym.is_lower == token.is_lower] if synonyms: new_word = random.choice(synonyms) new_text.append(new_word) else: new_text.append(token.text) else: new_text.append(token.text) return " ".join(new_text) # Random text transformations to simulate human-like errors def random_capitalize(word): if word.isalpha() and random.random() < 0.1: return word.capitalize() return word def random_remove_punctuation(text): if random.random() < 0.2: text = list(text) indices = [i for i, c in enumerate(text) if c in string.punctuation] if indices: remove_indices = random.sample(indices, min(3, len(indices))) for idx in sorted(remove_indices, reverse=True): text.pop(idx) return ''.join(text) return text def random_double_period(text): if random.random() < 0.2: text = text.replace('.', '..', 3) return text def random_double_space(text): if random.random() < 0.2: words = text.split() for _ in range(min(3, len(words) - 1)): idx = random.randint(0, len(words) - 2) words[idx] += ' ' return ' '.join(words) return text def random_replace_comma_space(text, period_replace_percentage=0.33): comma_occurrences = text.count(", ") period_occurrences = text.count(". ") replace_count_comma = max(1, comma_occurrences // 3) replace_count_period = max(1, period_occurrences // 3) comma_indices = [i for i in range(len(text)) if text.startswith(", ", i)] period_indices = [i for i in range(len(text)) if text.startswith(". ", i)] replace_indices_comma = random.sample(comma_indices, min(replace_count_comma, len(comma_indices))) replace_indices_period = random.sample(period_indices, min(replace_count_period, len(period_indices))) for idx in sorted(replace_indices_comma + replace_indices_period, reverse=True): if text.startswith(", ", idx): text = text[:idx] + " ," + text[idx + 2:] if text.startswith(". ", idx): text = text[:idx] + " ." + text[idx + 2:] return text def transform_paragraph(paragraph): words = paragraph.split() if len(words) > 12: words = [random_capitalize(word) for word in words] transformed_paragraph = ' '.join(words) transformed_paragraph = random_remove_punctuation(transformed_paragraph) transformed_paragraph = random_double_period(transformed_paragraph) transformed_paragraph = random_double_space(transformed_paragraph) transformed_paragraph = random_replace_comma_space(transformed_paragraph) transformed_paragraph = replace_with_synonyms(transformed_paragraph) # Use spaCy for synonyms else: transformed_paragraph = paragraph return transformed_paragraph def transform_text(text): paragraphs = text.split('\n') transformed_paragraphs = [transform_paragraph(paragraph) for paragraph in paragraphs] return '\n'.join(transformed_paragraphs) # Humanize the AI-detected text using the SRDdev Paraphrase model with optimized parameters def humanize_text(AI_text): paragraphs = AI_text.split("\n") paraphrased_paragraphs = [] for paragraph in paragraphs: if paragraph.strip(): inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device) paraphrased_ids = paraphrase_model.generate( inputs['input_ids'], max_length=inputs['input_ids'].shape[-1] + 20, num_beams=2, # Reduced beam size for speed early_stopping=True, length_penalty=0.8, # Lower penalty to generate faster no_repeat_ngram_size=2, # Reduced for performance do_sample=True, # Enable sampling to add randomness top_k=50, # Top-k sampling top_p=0.95, # Top-p (nucleus) sampling ) paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True) paraphrased_paragraphs.append(paraphrased_text) return "\n\n".join(paraphrased_paragraphs) # Main function to handle the overall process with batch processing def main_function(AI_text): sentences = nltk.sent_tokenize(AI_text) ai_probabilities = detect_ai_generated(sentences) ai_generated_percentage = sum([1 for prob in ai_probabilities if prob > 0.5]) / len(ai_probabilities) * 100 # Transform AI text to make it more human-like humanized_text = humanize_text(AI_text) humanized_text = transform_text(humanized_text) # Add randomness to simulate human errors return f"AI-Generated Content: {ai_generated_percentage:.2f}%\n\nHumanized Text:\n{humanized_text}" # Gradio interface definition interface = gr.Interface( fn=main_function, inputs="textbox", outputs="textbox", title="AI Text Humanizer", description="Enter AI-generated text and get a human-written version. This space uses models from Hugging Face directly." ) # Launch the Gradio app interface.launch(debug=True)