import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import torch import spacy import subprocess import nltk from nltk.corpus import wordnet from gensim import downloader as api # Ensure necessary NLTK data is downloaded nltk.download('wordnet') nltk.download('omw-1.4') # Ensure the spaCy model is installed try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") # Load a smaller Word2Vec model from Gensim's pre-trained models word_vectors = api.load("glove-wiki-gigaword-50") # Check for GPU and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load AI Detector model and tokenizer from Hugging Face (DistilBERT) tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) # Load grammar correction model from Hugging Face grammar_corrector = pipeline("text2text-generation", model="prithivida/grammar-error-correction", device=0 if torch.cuda.is_available() else -1) # AI detection function using DistilBERT def detect_ai_generated(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.softmax(outputs.logits, dim=1) ai_probability = probabilities[0][1].item() # Probability of being AI-generated return f"AI-Generated Content Probability: {ai_probability:.2f}%" # Function to get synonyms using NLTK WordNet def get_synonyms_nltk(word, pos): synsets = wordnet.synsets(word, pos=pos) if synsets: lemmas = synsets[0].lemmas() return [lemma.name() for lemma in lemmas] return [] # Paraphrasing function using spaCy and NLTK (without grammar correction) def paraphrase_with_spacy_nltk(text): doc = nlp(text) paraphrased_words = [] for token in doc: # Map spaCy POS tags to WordNet POS tags pos = None if token.pos_ in {"NOUN"}: pos = wordnet.NOUN elif token.pos_ in {"VERB"}: pos = wordnet.VERB elif token.pos_ in {"ADJ"}: pos = wordnet.ADJ elif token.pos_ in {"ADV"}: pos = wordnet.ADV synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] # Replace with a synonym only if it makes sense if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): paraphrased_words.append(synonyms[0]) else: paraphrased_words.append(token.text) # Join the words back into a sentence paraphrased_sentence = ' '.join(paraphrased_words) return paraphrased_sentence # Grammar correction function using Hugging Face grammar correction model def correct_grammar(text): corrected_text = grammar_corrector(text)[0]['generated_text'] return corrected_text # Combined function: Paraphrase -> Grammar Check def paraphrase_and_correct(text): # Step 1: Paraphrase the text paraphrased_text = paraphrase_with_spacy_nltk(text) # Step 2: Apply grammar correction corrected_text = correct_grammar(paraphrased_text) return corrected_text # Gradio interface definition with gr.Blocks() as interface: with gr.Row(): with gr.Column(): text_input = gr.Textbox(lines=5, label="Input Text") detect_button = gr.Button("AI Detection") paraphrase_button = gr.Button("Paraphrase & Correct Grammar") with gr.Column(): output_text = gr.Textbox(label="Output") detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text) paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) # Launch the Gradio app interface.launch(debug=False)