# Import dependencies import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration import torch import nltk import spacy from nltk.corpus import wordnet import subprocess # Download NLTK data (if not already downloaded) nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') # Download WordNet # Download spaCy model if not already installed try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") # Check for GPU and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load AI Detector model and tokenizer from Hugging Face (DistilBERT) tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) # Load SRDdev Paraphrase model and tokenizer for humanizing text paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase") paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device) # Function to find synonyms using WordNet via NLTK def get_synonyms(word): synonyms = set() for syn in wordnet.synsets(word): for lemma in syn.lemmas(): synonyms.add(lemma.name()) return list(synonyms) # Replace words with synonyms using spaCy and WordNet def replace_with_synonyms(text): doc = nlp(text) processed_text = [] for token in doc: synonyms = get_synonyms(token.text.lower()) if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}: # Only replace certain types of words replacement = synonyms[0] # Replace with the first synonym if token.is_title: replacement = replacement.capitalize() processed_text.append(replacement) else: processed_text.append(token.text) return " ".join(processed_text) # AI detection function using DistilBERT def detect_ai_generated(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.softmax(outputs.logits, dim=1) return probabilities[0][1].item() # Probability of being AI-generated # Humanize the AI-detected text using the SRDdev Paraphrase model def humanize_text(AI_text): paragraphs = AI_text.split("\n") paraphrased_paragraphs = [] for paragraph in paragraphs: if paragraph.strip(): inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device) with torch.no_grad(): # Avoid gradient calculations for faster inference paraphrased_ids = paraphrase_model.generate( inputs['input_ids'], max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length num_beams=4, early_stopping=True, length_penalty=1.0, no_repeat_ngram_size=3, ) paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True) paraphrased_paragraphs.append(paraphrased_text) return "\n\n".join(paraphrased_paragraphs) # Main function to handle the overall process def main_function(AI_text): # Replace words with synonyms text_with_synonyms = replace_with_synonyms(AI_text) # Detect AI-generated content ai_probability = detect_ai_generated(text_with_synonyms) # Humanize AI text humanized_text = humanize_text(text_with_synonyms) return f"AI-Generated Content: {ai_probability:.2f}%\n\nHumanized Text:\n{humanized_text}" # Gradio interface definition interface = gr.Interface( fn=main_function, inputs="textbox", outputs="textbox", title="AI Text Humanizer with Synonym Replacement", description="Enter AI-generated text and get a human-written version, with synonyms replaced for more natural output. This space uses models from Hugging Face directly." ) # Launch the Gradio app interface.launch(debug=False) # Turn off debug mode for production