import os import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import torch import spacy import subprocess import nltk from nltk.corpus import wordnet from gensim import downloader as api # Ensure necessary NLTK data is downloaded nltk.download('wordnet') nltk.download('omw-1.4') # Ensure the SpaCy model is installed try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") # Load a smaller Word2Vec model from Gensim's pre-trained models word_vectors = api.load("glove-wiki-gigaword-50") # Check for GPU and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load AI Detector model and tokenizer from Hugging Face (roberta-base-openai-detector) tokenizer_ai = AutoTokenizer.from_pretrained("roberta-base-openai-detector") model_ai = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector").to(device) # AI detection function using the RoBERTa-based model def detect_ai_generated(text): inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device) with torch.no_grad(): outputs = model_ai(**inputs) probabilities = torch.softmax(outputs.logits, dim=1) ai_probability = probabilities[0][1].item() * 100 # Probability of being AI-generated human_probability = 100 - ai_probability # Probability of being Human-written # Determine the label based on the higher probability if ai_probability > human_probability: label = "AI" probability = ai_probability else: label = "Human" probability = human_probability return f"The content is {probability:.2f}% {label} Written", probability # Function to get synonyms using NLTK WordNet def get_synonyms_nltk(word, pos): synsets = wordnet.synsets(word, pos=pos) if synsets: lemmas = synsets[0].lemmas() return [lemma.name() for lemma in lemmas] return [] # Function to capitalize the first letter of sentences and proper nouns def capitalize_sentences_and_nouns(text): doc = nlp(text) corrected_text = [] for sent in doc.sents: sentence = [] for token in sent: if token.i == sent.start: # First word of the sentence sentence.append(token.text.capitalize()) elif token.pos_ == "PROPN": # Proper noun sentence.append(token.text.capitalize()) else: sentence.append(token.text) corrected_text.append(' '.join(sentence)) return ' '.join(corrected_text) # Paraphrasing function using SpaCy and NLTK def paraphrase_with_spacy_nltk(text): doc = nlp(text) paraphrased_words = [] for token in doc: # Map SpaCy POS tags to WordNet POS tags pos = None if token.pos_ in {"NOUN"}: pos = wordnet.NOUN elif token.pos_ in {"VERB"}: pos = wordnet.VERB elif token.pos_ in {"ADJ"}: pos = wordnet.ADJ elif token.pos_ in {"ADV"}: pos = wordnet.ADV synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] # Replace with a synonym only if it makes sense if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): paraphrased_words.append(synonyms[0]) else: paraphrased_words.append(token.text) # Join the words back into a sentence paraphrased_sentence = ' '.join(paraphrased_words) # Capitalize sentences and proper nouns corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence) return corrected_text # Combined function: Paraphrase -> Capitalization def paraphrase_and_correct(text): # Step 1: Paraphrase the text paraphrased_text = paraphrase_with_spacy_nltk(text) # Step 2: Capitalize sentences and proper nouns final_text = capitalize_sentences_and_nouns(paraphrased_text) return final_text # Gradio interface definition with gr.Blocks() as demo: with gr.Row(): with gr.Column(): t1 = gr.Textbox( lines=5, label='Text', value="There are a few things that can help protect your credit card information from being misused when you give it to a restaurant or any other business:\n\nEncryption: Many businesses use encryption to protect your credit card information when it is being transmitted or stored. This means that the information is transformed into a code that is difficult for anyone to read without the right key." ) button1 = gr.Button("🤖 Predict!") label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') score1 = gr.Textbox(lines=1, label='Probability (%)') button1.click(detect_ai_generated, inputs=[t1], outputs=[label1, score1]) demo.launch()