# Import dependencies import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration import torch import nltk from nltk.corpus import wordnet import subprocess # Download NLTK data (if not already downloaded) nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') # Download WordNet # Check for GPU and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load AI Detector model and tokenizer from Hugging Face (DistilBERT) tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) # Load Parrot Paraphraser model and tokenizer for humanizing text paraphrase_tokenizer = T5Tokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5") paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(device) # AI detection function using DistilBERT def detect_ai_generated(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.softmax(outputs.logits, dim=1) ai_probability = probabilities[0][1].item() # Probability of being AI-generated return f"AI-Generated Content Probability: {ai_probability:.2f}%" # Humanize the AI-detected text using the Parrot Paraphraser model def humanize_text(AI_text): inputs = paraphrase_tokenizer(AI_text, return_tensors="pt", max_length=512, truncation=True).to(device) with torch.no_grad(): # Avoid gradient calculations for faster inference paraphrased_ids = paraphrase_model.generate( inputs['input_ids'], max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length num_beams=4, early_stopping=True, length_penalty=1.0, no_repeat_ngram_size=3, ) paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True) return f"Humanized Text:\n{paraphrased_text}" # Gradio interface definition ai_detection_interface = gr.Interface( fn=detect_ai_generated, inputs="textbox", outputs="text", title="AI Text Detection", description="Enter text to determine the probability of it being AI-generated." ) humanization_interface = gr.Interface( fn=humanize_text, inputs="textbox", outputs="text", title="Text Humanizer", description="Enter text to get a human-written version, paraphrased for natural output." ) # Combine both interfaces into a single Gradio app with tabs interface = gr.TabbedInterface( [ai_detection_interface, humanization_interface], ["AI Detection", "Humanization"] ) # Launch the Gradio app interface.launch(debug=False)