sashtech commited on
Commit
e08ddfa
·
verified ·
1 Parent(s): b7577da

Delete Dockerfile

Browse files
Files changed (1) hide show
  1. Dockerfile +0 -109
Dockerfile DELETED
@@ -1,109 +0,0 @@
1
- import os
2
- import gradio as gr
3
- from transformers import pipeline
4
- import spacy
5
- import subprocess
6
- import nltk
7
- from nltk.corpus import wordnet
8
-
9
- # Initialize the English text classification pipeline for AI detection
10
- pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
11
-
12
- # Function to predict the label and score for English text (AI Detection)
13
- def predict_en(text):
14
- res = pipeline_en(text)[0]
15
- return res['label'], res['score']
16
-
17
- # Ensure necessary NLTK data is downloaded for Humanifier
18
- nltk.download('wordnet')
19
- nltk.download('omw-1.4')
20
-
21
- # Ensure the SpaCy model is installed for Humanifier
22
- try:
23
- nlp = spacy.load("en_core_web_sm")
24
- except OSError:
25
- subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
26
- nlp = spacy.load("en_core_web_sm")
27
-
28
- # Grammar, Tense, and Singular/Plural Correction Functions
29
-
30
- # Correct article errors (e.g., "a apple" -> "an apple")
31
- def check_article_error(text):
32
- tokens = nltk.pos_tag(nltk.word_tokenize(text))
33
- corrected_tokens = []
34
-
35
- for i, token in enumerate(tokens):
36
- word, pos = token
37
- if word.lower() == 'a' and i < len(tokens) - 1 and tokens[i + 1][1] == 'NN':
38
- corrected_tokens.append('an' if tokens[i + 1][0][0] in 'aeiou' else 'a')
39
- else:
40
- corrected_tokens.append(word)
41
-
42
- return ' '.join(corrected_tokens)
43
-
44
- # Correct tense errors (e.g., "She has go out" -> "She has gone out")
45
- def check_tense_error(text):
46
- tokens = nltk.pos_tag(nltk.word_tokenize(text))
47
- corrected_tokens = []
48
-
49
- for word, pos in tokens:
50
- if word == "go" and pos == "VB":
51
- corrected_tokens.append("gone")
52
- elif word == "know" and pos == "VB":
53
- corrected_tokens.append("known")
54
- else:
55
- corrected_tokens.append(word)
56
-
57
- return ' '.join(corrected_tokens)
58
-
59
- # Correct singular/plural errors (e.g., "There are many chocolate" -> "There are many chocolates")
60
- def check_pluralization_error(text):
61
- tokens = nltk.pos_tag(nltk.word_tokenize(text))
62
- corrected_tokens = []
63
-
64
- for word, pos in tokens:
65
- if word == "chocolate" and pos == "NN":
66
- corrected_tokens.append("chocolates")
67
- elif word == "kids" and pos == "NNS":
68
- corrected_tokens.append("kid")
69
- else:
70
- corrected_tokens.append(word)
71
-
72
- return ' '.join(corrected_tokens)
73
-
74
- # Combined function to correct grammar, tense, and singular/plural errors
75
- def correct_grammar_tense_plural(text):
76
- text = check_article_error(text)
77
- text = check_tense_error(text)
78
- text = check_pluralization_error(text)
79
- return text
80
-
81
- # Gradio app setup with three tabs
82
- with gr.Blocks() as demo:
83
- with gr.Tab("AI Detection"):
84
- t1 = gr.Textbox(lines=5, label='Text')
85
- button1 = gr.Button("🤖 Predict!")
86
- label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
87
- score1 = gr.Textbox(lines=1, label='Prob')
88
-
89
- # Connect the prediction function to the button
90
- button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
91
-
92
- with gr.Tab("Humanifier"):
93
- text_input = gr.Textbox(lines=5, label="Input Text")
94
- paraphrase_button = gr.Button("Paraphrase & Correct")
95
- output_text = gr.Textbox(label="Paraphrased Text")
96
-
97
- # Connect the paraphrasing function to the button
98
- paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
99
-
100
- with gr.Tab("Grammar Correction"):
101
- grammar_input = gr.Textbox(lines=5, label="Input Text")
102
- grammar_button = gr.Button("Correct Grammar")
103
- grammar_output = gr.Textbox(label="Corrected Text")
104
-
105
- # Connect the custom grammar, tense, and plural correction function to the button
106
- grammar_button.click(correct_grammar_tense_plural, inputs=grammar_input, outputs=grammar_output)
107
-
108
- # Launch the app with all functionalities
109
- demo.launch()