Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
import spacy
|
5 |
import subprocess
|
@@ -28,6 +28,9 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
28 |
tokenizer_ai = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
29 |
model_ai = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
30 |
|
|
|
|
|
|
|
31 |
# AI detection function using DistilBERT
|
32 |
def detect_ai_generated(text):
|
33 |
inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
@@ -96,13 +99,16 @@ def paraphrase_with_spacy_nltk(text):
|
|
96 |
|
97 |
return corrected_text
|
98 |
|
99 |
-
# Combined function: Paraphrase -> Capitalization
|
100 |
def paraphrase_and_correct(text):
|
101 |
# Step 1: Paraphrase the text
|
102 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
103 |
|
104 |
-
# Step 2:
|
105 |
-
|
|
|
|
|
|
|
106 |
|
107 |
return final_text
|
108 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
3 |
import torch
|
4 |
import spacy
|
5 |
import subprocess
|
|
|
28 |
tokenizer_ai = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
29 |
model_ai = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
30 |
|
31 |
+
# Load Grammar Correction model (T5) from Hugging Face
|
32 |
+
grammar_corrector = pipeline('text2text-generation', model='prithivida/grammar-error-correcter')
|
33 |
+
|
34 |
# AI detection function using DistilBERT
|
35 |
def detect_ai_generated(text):
|
36 |
inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
|
|
99 |
|
100 |
return corrected_text
|
101 |
|
102 |
+
# Combined function: Paraphrase -> Grammar Correction -> Capitalization
|
103 |
def paraphrase_and_correct(text):
|
104 |
# Step 1: Paraphrase the text
|
105 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
106 |
|
107 |
+
# Step 2: Correct grammar using T5 model
|
108 |
+
corrected_text = grammar_corrector(paraphrased_text)[0]['generated_text']
|
109 |
+
|
110 |
+
# Step 3: Capitalize sentences and proper nouns
|
111 |
+
final_text = capitalize_sentences_and_nouns(corrected_text)
|
112 |
|
113 |
return final_text
|
114 |
|