Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -58,9 +58,8 @@ def detect_ai_generated(text):
|
|
58 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
59 |
with torch.no_grad():
|
60 |
outputs = model(**inputs)
|
61 |
-
|
62 |
-
|
63 |
-
return ai_probability
|
64 |
|
65 |
# Humanize the AI-detected text using the SRDdev Paraphrase model
|
66 |
def humanize_text(AI_text):
|
@@ -69,14 +68,15 @@ def humanize_text(AI_text):
|
|
69 |
for paragraph in paragraphs:
|
70 |
if paragraph.strip():
|
71 |
inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device)
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
80 |
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
|
81 |
paraphrased_paragraphs.append(paraphrased_text)
|
82 |
return "\n\n".join(paraphrased_paragraphs)
|
@@ -104,4 +104,4 @@ interface = gr.Interface(
|
|
104 |
)
|
105 |
|
106 |
# Launch the Gradio app
|
107 |
-
interface.launch(debug=
|
|
|
58 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
59 |
with torch.no_grad():
|
60 |
outputs = model(**inputs)
|
61 |
+
probabilities = torch.softmax(outputs.logits, dim=1)
|
62 |
+
return probabilities[0][1].item() # Probability of being AI-generated
|
|
|
63 |
|
64 |
# Humanize the AI-detected text using the SRDdev Paraphrase model
|
65 |
def humanize_text(AI_text):
|
|
|
68 |
for paragraph in paragraphs:
|
69 |
if paragraph.strip():
|
70 |
inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device)
|
71 |
+
with torch.no_grad(): # Avoid gradient calculations for faster inference
|
72 |
+
paraphrased_ids = paraphrase_model.generate(
|
73 |
+
inputs['input_ids'],
|
74 |
+
max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length
|
75 |
+
num_beams=4,
|
76 |
+
early_stopping=True,
|
77 |
+
length_penalty=1.0,
|
78 |
+
no_repeat_ngram_size=3,
|
79 |
+
)
|
80 |
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
|
81 |
paraphrased_paragraphs.append(paraphrased_text)
|
82 |
return "\n\n".join(paraphrased_paragraphs)
|
|
|
104 |
)
|
105 |
|
106 |
# Launch the Gradio app
|
107 |
+
interface.launch(debug=False) # Turn off debug mode for production
|