Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,12 @@ import subprocess
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Initialize the English text classification pipeline for AI detection
|
11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
@@ -24,19 +30,15 @@ except OSError:
|
|
24 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
25 |
nlp = spacy.load("en_core_web_sm")
|
26 |
|
|
|
|
|
|
|
|
|
27 |
# Function to predict the label and score for English text (AI Detection)
|
28 |
def predict_en(text):
|
29 |
res = pipeline_en(text)[0]
|
30 |
return res['label'], res['score']
|
31 |
|
32 |
-
# Function to get synonyms using NLTK WordNet
|
33 |
-
def get_synonyms_nltk(word, pos):
|
34 |
-
synsets = wordnet.synsets(word, pos=pos)
|
35 |
-
if synsets:
|
36 |
-
lemmas = synsets[0].lemmas()
|
37 |
-
return [lemma.name() for lemma in lemmas]
|
38 |
-
return []
|
39 |
-
|
40 |
# Function to remove redundant and meaningless words
|
41 |
def remove_redundant_words(text):
|
42 |
doc = nlp(text)
|
@@ -102,72 +104,6 @@ def correct_singular_plural_errors(text):
|
|
102 |
|
103 |
return ' '.join(corrected_text)
|
104 |
|
105 |
-
# Function to check and correct article errors
|
106 |
-
def correct_article_errors(text):
|
107 |
-
doc = nlp(text)
|
108 |
-
corrected_text = []
|
109 |
-
for token in doc:
|
110 |
-
if token.text in ['a', 'an']:
|
111 |
-
next_token = token.nbor(1)
|
112 |
-
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
113 |
-
corrected_text.append("an")
|
114 |
-
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
115 |
-
corrected_text.append("a")
|
116 |
-
else:
|
117 |
-
corrected_text.append(token.text)
|
118 |
-
else:
|
119 |
-
corrected_text.append(token.text)
|
120 |
-
return ' '.join(corrected_text)
|
121 |
-
|
122 |
-
# Function to get the correct synonym while maintaining verb form
|
123 |
-
def replace_with_synonym(token):
|
124 |
-
pos = None
|
125 |
-
if token.pos_ == "VERB":
|
126 |
-
pos = wordnet.VERB
|
127 |
-
elif token.pos_ == "NOUN":
|
128 |
-
pos = wordnet.NOUN
|
129 |
-
elif token.pos_ == "ADJ":
|
130 |
-
pos = wordnet.ADJ
|
131 |
-
elif token.pos_ == "ADV":
|
132 |
-
pos = wordnet.ADV
|
133 |
-
|
134 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
135 |
-
|
136 |
-
if synonyms:
|
137 |
-
synonym = synonyms[0]
|
138 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
139 |
-
synonym = synonym + 'ing'
|
140 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
141 |
-
synonym = synonym + 'ed'
|
142 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
143 |
-
synonym = synonym + 's'
|
144 |
-
return synonym
|
145 |
-
return token.text
|
146 |
-
|
147 |
-
# Function to check for and avoid double negatives
|
148 |
-
def correct_double_negatives(text):
|
149 |
-
doc = nlp(text)
|
150 |
-
corrected_text = []
|
151 |
-
for token in doc:
|
152 |
-
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
|
153 |
-
corrected_text.append("always")
|
154 |
-
else:
|
155 |
-
corrected_text.append(token.text)
|
156 |
-
return ' '.join(corrected_text)
|
157 |
-
|
158 |
-
# Function to ensure subject-verb agreement
|
159 |
-
def ensure_subject_verb_agreement(text):
|
160 |
-
doc = nlp(text)
|
161 |
-
corrected_text = []
|
162 |
-
for token in doc:
|
163 |
-
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
164 |
-
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
|
165 |
-
corrected_text.append(token.head.lemma_ + "s")
|
166 |
-
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
|
167 |
-
corrected_text.append(token.head.lemma_)
|
168 |
-
corrected_text.append(token.text)
|
169 |
-
return ' '.join(corrected_text)
|
170 |
-
|
171 |
# Function to correct spelling errors
|
172 |
def correct_spelling(text):
|
173 |
words = text.split()
|
@@ -194,18 +130,16 @@ def rephrase_with_synonyms(text):
|
|
194 |
pos_tag = wordnet.ADV
|
195 |
|
196 |
if pos_tag:
|
197 |
-
synonyms =
|
198 |
if synonyms:
|
199 |
-
synonym = synonyms[0]
|
200 |
if token.pos_ == "VERB":
|
201 |
-
if token.tag_ == "VBG": # Present participle
|
202 |
synonym = synonym + 'ing'
|
203 |
-
elif token.tag_
|
204 |
synonym = synonym + 'ed'
|
205 |
elif token.tag_ == "VBZ": # Third-person singular present
|
206 |
synonym = synonym + 's'
|
207 |
-
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
208 |
-
synonym += 's' if not synonym.endswith('s') else ""
|
209 |
rephrased_text.append(synonym)
|
210 |
else:
|
211 |
rephrased_text.append(token.text)
|
@@ -226,11 +160,8 @@ def paraphrase_and_correct(text):
|
|
226 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
227 |
|
228 |
# Apply grammatical corrections
|
229 |
-
paraphrased_text = correct_article_errors(paraphrased_text)
|
230 |
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
231 |
paraphrased_text = correct_tense_errors(paraphrased_text)
|
232 |
-
paraphrased_text = correct_double_negatives(paraphrased_text)
|
233 |
-
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
234 |
|
235 |
# Rephrase with synonyms while maintaining grammatical forms
|
236 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
@@ -240,6 +171,18 @@ def paraphrase_and_correct(text):
|
|
240 |
|
241 |
return paraphrased_text
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
# Gradio app setup with two tabs
|
244 |
with gr.Blocks() as demo:
|
245 |
with gr.Tab("AI Detection"):
|
@@ -259,4 +202,9 @@ with gr.Blocks() as demo:
|
|
259 |
# Connect the paraphrasing and correction function to the button
|
260 |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
261 |
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
9 |
+
from fastapi import FastAPI
|
10 |
+
from pydantic import BaseModel
|
11 |
+
import uvicorn
|
12 |
+
|
13 |
+
# Initialize FastAPI app
|
14 |
+
api_app = FastAPI()
|
15 |
|
16 |
# Initialize the English text classification pipeline for AI detection
|
17 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
30 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
31 |
nlp = spacy.load("en_core_web_sm")
|
32 |
|
33 |
+
# Define request models for FastAPI
|
34 |
+
class TextRequest(BaseModel):
|
35 |
+
text: str
|
36 |
+
|
37 |
# Function to predict the label and score for English text (AI Detection)
|
38 |
def predict_en(text):
|
39 |
res = pipeline_en(text)[0]
|
40 |
return res['label'], res['score']
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# Function to remove redundant and meaningless words
|
43 |
def remove_redundant_words(text):
|
44 |
doc = nlp(text)
|
|
|
104 |
|
105 |
return ' '.join(corrected_text)
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
# Function to correct spelling errors
|
108 |
def correct_spelling(text):
|
109 |
words = text.split()
|
|
|
130 |
pos_tag = wordnet.ADV
|
131 |
|
132 |
if pos_tag:
|
133 |
+
synonyms = wordnet.synsets(token.lemma_, pos=pos_tag)
|
134 |
if synonyms:
|
135 |
+
synonym = synonyms[0].lemmas()[0].name()
|
136 |
if token.pos_ == "VERB":
|
137 |
+
if token.tag_ == "VBG": # Present participle
|
138 |
synonym = synonym + 'ing'
|
139 |
+
elif token.tag_ in {"VBD", "VBN"}: # Past tense or past participle
|
140 |
synonym = synonym + 'ed'
|
141 |
elif token.tag_ == "VBZ": # Third-person singular present
|
142 |
synonym = synonym + 's'
|
|
|
|
|
143 |
rephrased_text.append(synonym)
|
144 |
else:
|
145 |
rephrased_text.append(token.text)
|
|
|
160 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
161 |
|
162 |
# Apply grammatical corrections
|
|
|
163 |
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
164 |
paraphrased_text = correct_tense_errors(paraphrased_text)
|
|
|
|
|
165 |
|
166 |
# Rephrase with synonyms while maintaining grammatical forms
|
167 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
|
|
171 |
|
172 |
return paraphrased_text
|
173 |
|
174 |
+
# FastAPI Endpoint for AI detection
|
175 |
+
@api_app.post("/ai-detection")
|
176 |
+
async def ai_detection(request: TextRequest):
|
177 |
+
label, score = predict_en(request.text)
|
178 |
+
return {"label": label, "score": score}
|
179 |
+
|
180 |
+
# FastAPI Endpoint for paraphrasing and grammar correction
|
181 |
+
@api_app.post("/paraphrase")
|
182 |
+
async def paraphrase(request: TextRequest):
|
183 |
+
corrected_text = paraphrase_and_correct(request.text)
|
184 |
+
return {"corrected_text": corrected_text}
|
185 |
+
|
186 |
# Gradio app setup with two tabs
|
187 |
with gr.Blocks() as demo:
|
188 |
with gr.Tab("AI Detection"):
|
|
|
202 |
# Connect the paraphrasing and correction function to the button
|
203 |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
204 |
|
205 |
+
# Launch the Gradio app
|
206 |
+
demo.launch(share=True)
|
207 |
+
|
208 |
+
# Run the FastAPI app in a separate thread if needed
|
209 |
+
if __name__ == "__main__":
|
210 |
+
uvicorn.run(api_app, host="0.0.0.0", port=8000)
|