sashtech's picture
Update app.py
e00f367 verified
raw
history blame
6.71 kB
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from collections import defaultdict
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
synonyms = set()
for synset in synsets:
for lemma in synset.lemmas():
if lemma.name() != word:
synonyms.add(lemma.name())
return list(synonyms)
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Function to correct tense errors in a sentence (Tense Correction)
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB":
# Check if verb is in its base form
if token.tag_ == "VB" and token.text.lower() not in ["be", "have", "do"]:
# Attempt to correct verb form based on sentence context
context = " ".join([t.text for t in doc if t.i != token.i])
corrected_text.append(token.lemma_)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct singular/plural errors (Singular/Plural Correction)
def correct_singular_plural_errors(text):
doc = nlp(text)
corrected_text = []
# Create a context dictionary for singular/plural determination
context = defaultdict(int)
for token in doc:
if token.pos_ == "NOUN":
# Track context for noun usage
if token.tag_ == "NNS":
context['plural'] += 1
elif token.tag_ == "NN":
context['singular'] += 1
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN": # Singular noun
if context['plural'] > context['singular']:
corrected_text.append(token.lemma_ + 's')
else:
corrected_text.append(token.text)
elif token.tag_ == "NNS": # Plural noun
if context['singular'] > context['plural']:
corrected_text.append(token.lemma_)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to check and correct article errors
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text in ['a', 'an']:
next_token = token.nbor(1)
if token.text == "a" and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
corrected_text.append("a")
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Paraphrasing function using SpaCy and NLTK (Humanifier)
def paraphrase_with_spacy_nltk(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
# Map SpaCy POS tags to WordNet POS tags
pos = None
if token.pos_ == "NOUN":
pos = wordnet.NOUN
elif token.pos_ == "VERB":
pos = wordnet.VERB
elif token.pos_ == "ADJ":
pos = wordnet.ADJ
elif token.pos_ == "ADV":
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
# Replace with a synonym only if it makes sense
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}:
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
return ' '.join(paraphrased_words)
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
def paraphrase_and_correct(text):
# Step 1: Paraphrase the text
paraphrased_text = paraphrase_with_spacy_nltk(text)
# Step 2: Apply grammatical corrections on the paraphrased text
corrected_text = correct_article_errors(paraphrased_text)
corrected_text = capitalize_sentences_and_nouns(corrected_text)
corrected_text = correct_singular_plural_errors(corrected_text)
final_text = correct_tense_errors(corrected_text)
return final_text
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the app with the remaining functionalities
demo.launch()