sashtech's picture
Update app.py
59f9d5b verified
raw
history blame
2.66 kB
# Import dependencies
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import nltk
from nltk.corpus import wordnet
from gensim.models import KeyedVectors
from nltk.tokenize import word_tokenize
# Download NLTK data (if not already downloaded)
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet') # Download WordNet
# Load Word2Vec model from Gensim
word_vectors = KeyedVectors.load_word2vec_format('path/to/GoogleNews-vectors-negative300.bin.gz', binary=True, limit=100000) # Adjust path as needed
# Check for GPU and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT)
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
# Function to get synonyms using Gensim Word2Vec
def get_synonyms_gensim(word):
try:
synonyms = word_vectors.most_similar(positive=[word], topn=5)
return [synonym[0] for synonym in synonyms]
except KeyError:
return []
# Paraphrasing function using Gensim for synonym replacement
def paraphrase_text(text):
words = word_tokenize(text)
paraphrased_words = []
for word in words:
synonyms = get_synonyms_gensim(word.lower())
if synonyms:
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(word)
return ' '.join(paraphrased_words)
# AI detection function using DistilBERT
def detect_ai_generated(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=1)
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
return f"AI-Generated Content Probability: {ai_probability:.2f}%"
# Gradio interface definition
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
text_input = gr.Textbox(lines=5, label="Input Text")
detect_button = gr.Button("AI Detection")
paraphrase_button = gr.Button("Paraphrase Text")
with gr.Column():
output_text = gr.Textbox(label="Output")
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text)
paraphrase_button.click(paraphrase_text, inputs=text_input, outputs=output_text)
# Launch the Gradio app
interface.launch(debug=False)