Spaces:
Running
Running
# Import dependencies | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration | |
import torch | |
import nltk | |
# Download NLTK data (if not already downloaded) | |
nltk.download('punkt') | |
nltk.download('stopwords') | |
# Check for GPU and set the device accordingly | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT) | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) | |
# Load SRDdev Paraphrase model and tokenizer for humanizing text | |
paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase") | |
paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device) | |
# AI detection function using DistilBERT | |
def detect_ai_generated(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.softmax(outputs.logits, dim=1) | |
ai_probability = probabilities[0][1].item() # Probability of being AI-generated | |
return ai_probability | |
# Humanize the AI-detected text using the SRDdev Paraphrase model | |
def humanize_text(AI_text): | |
paragraphs = AI_text.split("\n") | |
paraphrased_paragraphs = [] | |
for paragraph in paragraphs: | |
if paragraph.strip(): | |
inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device) | |
paraphrased_ids = paraphrase_model.generate( | |
inputs['input_ids'], | |
max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length | |
num_beams=4, | |
early_stopping=True, | |
length_penalty=1.0, | |
no_repeat_ngram_size=3, | |
) | |
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True) | |
paraphrased_paragraphs.append(paraphrased_text) | |
return "\n\n".join(paraphrased_paragraphs) | |
# Main function to handle the overall process | |
def main_function(AI_text): | |
ai_probability = detect_ai_generated(AI_text) | |
# Humanize AI text | |
humanized_text = humanize_text(AI_text) | |
return f"AI-Generated Content: {ai_probability:.2f}%\n\nHumanized Text:\n{humanized_text}" | |
# Gradio interface definition | |
interface = gr.Interface( | |
fn=main_function, | |
inputs="textbox", | |
outputs="textbox", | |
title="AI Text Humanizer", | |
description="Enter AI-generated text and get a human-written version. This space uses models from Hugging Face directly." | |
) | |
# Launch the Gradio app | |
interface.launch(debug=True) | |