Shujaat Ali
Update app.py
84ec915 verified
raw
history blame
2.87 kB
# Import dependencies
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration
import torch
import nltk
# Download NLTK data (if not already downloaded)
nltk.download('punkt')
nltk.download('stopwords')
# Check for GPU and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT)
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
# Load SRDdev Paraphrase model and tokenizer for humanizing text
paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase")
paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device)
# AI detection function using DistilBERT
def detect_ai_generated(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=1)
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
return ai_probability
# Humanize the AI-detected text using the SRDdev Paraphrase model
def humanize_text(AI_text):
paragraphs = AI_text.split("\n")
paraphrased_paragraphs = []
for paragraph in paragraphs:
if paragraph.strip():
inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device)
paraphrased_ids = paraphrase_model.generate(
inputs['input_ids'],
max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length
num_beams=4,
early_stopping=True,
length_penalty=1.0,
no_repeat_ngram_size=3,
)
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
paraphrased_paragraphs.append(paraphrased_text)
return "\n\n".join(paraphrased_paragraphs)
# Main function to handle the overall process
def main_function(AI_text):
ai_probability = detect_ai_generated(AI_text)
# Humanize AI text
humanized_text = humanize_text(AI_text)
return f"AI-Generated Content: {ai_probability:.2f}%\n\nHumanized Text:\n{humanized_text}"
# Gradio interface definition
interface = gr.Interface(
fn=main_function,
inputs="textbox",
outputs="textbox",
title="AI Text Humanizer",
description="Enter AI-generated text and get a human-written version. This space uses models from Hugging Face directly."
)
# Launch the Gradio app
interface.launch(debug=True)