Spaces:
Running
Running
import os | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# Function to predict the label and score for English text (AI Detection) | |
def predict_en(text): | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
# Ensure necessary NLTK data is downloaded for Humanifier | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the SpaCy model is installed for Humanifier | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Function to get synonyms using NLTK WordNet and maintain original verb form | |
def get_synonym(word, pos_tag, original_token): | |
synsets = wordnet.synsets(word) | |
if not synsets: | |
return word | |
for synset in synsets: | |
if synset.pos() == pos_tag: # Match the part of speech | |
synonym = synset.lemmas()[0].name() | |
# Preserve the original verb form | |
if original_token.tag_ in ["VBG", "VBN"]: # Present or past participle | |
return spacy_token_form(synonym, original_token.tag_) | |
elif original_token.tag_ in ["VBZ"]: # 3rd person singular | |
return synonym + "s" | |
else: | |
return synonym | |
return word | |
# Function to conjugate the synonym to the correct form based on the original token's tag | |
def spacy_token_form(synonym, tag): | |
if tag == "VBG": # Gerund or present participle | |
return synonym + "ing" if not synonym.endswith("ing") else synonym | |
elif tag == "VBN": # Past participle | |
return synonym + "ed" if not synonym.endswith("ed") else synonym | |
return synonym | |
# Function to rephrase text and replace words with their synonyms while maintaining form | |
def rephrase_with_synonyms(text): | |
doc = nlp(text) | |
rephrased_text = [] | |
for token in doc: | |
# Get the correct POS tag for WordNet | |
pos_tag = None | |
if token.pos_ == "NOUN": | |
pos_tag = wordnet.NOUN | |
elif token.pos_ == "VERB": | |
pos_tag = wordnet.VERB | |
elif token.pos_ == "ADJ": | |
pos_tag = wordnet.ADJ | |
elif token.pos_ == "ADV": | |
pos_tag = wordnet.ADV | |
if pos_tag: | |
synonym = get_synonym(token.text, pos_tag, token) | |
rephrased_text.append(synonym) | |
else: | |
rephrased_text.append(token.text) | |
return ' '.join(rephrased_text) | |
def capitalize_sentences_and_nouns(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start: # First word of the sentence | |
sentence.append(token.text.capitalize()) | |
elif token.pos_ == "PROPN": # Proper noun | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
# Function to paraphrase and correct grammar | |
def paraphrase_and_correct(text): | |
paraphrased_text = capitalize_sentences_and_nouns(text) # Capitalize first to ensure proper noun capitalization | |
# Apply grammatical corrections | |
paraphrased_text = correct_article_errors(paraphrased_text) | |
paraphrased_text = correct_singular_plural_errors(paraphrased_text) | |
paraphrased_text = correct_tense_errors(paraphrased_text) | |
# Rephrase with synonyms while maintaining grammatical forms | |
paraphrased_text = rephrase_with_synonyms(paraphrased_text) | |
return paraphrased_text | |
# Gradio app setup with two tabs | |
with gr.Blocks() as demo: | |
with gr.Tab("AI Detection"): | |
t1 = gr.Textbox(lines=5, label='Text') | |
button1 = gr.Button("🤖 Predict!") | |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') | |
score1 = gr.Textbox(lines=1, label='Prob') | |
# Connect the prediction function to the button | |
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en') | |
with gr.Tab("Humanifier"): | |
text_input = gr.Textbox(lines=5, label="Input Text") | |
paraphrase_button = gr.Button("Paraphrase & Correct") | |
output_text = gr.Textbox(label="Paraphrased Text") | |
# Connect the paraphrasing function to the button | |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) | |
# Launch the app with the remaining functionalities | |
demo.launch(share=True) | |