Spaces:
Running
Running
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch | |
| import spacy | |
| import subprocess | |
| import nltk | |
| from nltk.corpus import wordnet | |
| from gensim import downloader as api | |
| from gingerit.gingerit import GingerIt | |
| # Ensure necessary NLTK data is downloaded | |
| nltk.download('wordnet') | |
| nltk.download('omw-1.4') | |
| # Ensure the spaCy model is installed | |
| try: | |
| nlp = spacy.load("en_core_web_sm") | |
| except OSError: | |
| subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
| nlp = spacy.load("en_core_web_sm") | |
| # Load a smaller Word2Vec model from Gensim's pre-trained models | |
| word_vectors = api.load("glove-wiki-gigaword-50") | |
| # Check for GPU and set the device accordingly | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Load AI Detector model and tokenizer from Hugging Face (DistilBERT) | |
| tokenizer_ai = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | |
| model_ai = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) | |
| # Initialize GingerIt parser | |
| parser = GingerIt() | |
| # AI detection function using DistilBERT | |
| def detect_ai_generated(text): | |
| inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device) | |
| with torch.no_grad(): | |
| outputs = model_ai(**inputs) | |
| probabilities = torch.softmax(outputs.logits, dim=1) | |
| ai_probability = probabilities[0][1].item() # Probability of being AI-generated | |
| return f"AI-Generated Content Probability: {ai_probability:.2f}%" | |
| # Function to get synonyms using NLTK WordNet | |
| def get_synonyms_nltk(word, pos): | |
| synsets = wordnet.synsets(word, pos=pos) | |
| if synsets: | |
| lemmas = synsets[0].lemmas() | |
| return [lemma.name() for lemma in lemmas] | |
| return [] | |
| # Function to capitalize the first letter of sentences and proper nouns | |
| def capitalize_sentences_and_nouns(text): | |
| doc = nlp(text) | |
| corrected_text = [] | |
| for sent in doc.sents: | |
| sentence = [] | |
| for token in sent: | |
| if token.i == sent.start: # First word of the sentence | |
| sentence.append(token.text.capitalize()) | |
| elif token.pos_ == "PROPN": # Proper noun | |
| sentence.append(token.text.capitalize()) | |
| else: | |
| sentence.append(token.text) | |
| corrected_text.append(' '.join(sentence)) | |
| return ' '.join(corrected_text) | |
| # Paraphrasing function using spaCy and NLTK | |
| def paraphrase_with_spacy_nltk(text): | |
| doc = nlp(text) | |
| paraphrased_words = [] | |
| for token in doc: | |
| # Map spaCy POS tags to WordNet POS tags | |
| pos = None | |
| if token.pos_ in {"NOUN"}: | |
| pos = wordnet.NOUN | |
| elif token.pos_ in {"VERB"}: | |
| pos = wordnet.VERB | |
| elif token.pos_ in {"ADJ"}: | |
| pos = wordnet.ADJ | |
| elif token.pos_ in {"ADV"}: | |
| pos = wordnet.ADV | |
| synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] | |
| # Replace with a synonym only if it makes sense | |
| if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): | |
| paraphrased_words.append(synonyms[0]) | |
| else: | |
| paraphrased_words.append(token.text) | |
| # Join the words back into a sentence | |
| paraphrased_sentence = ' '.join(paraphrased_words) | |
| # Capitalize sentences and proper nouns | |
| corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence) | |
| return corrected_text | |
| # Function to correct grammar using GingerIt | |
| def correct_grammar(text): | |
| result = parser.parse(text) | |
| return result['result'] | |
| # Combined function: Paraphrase -> Capitalization -> Grammar Correction | |
| def paraphrase_and_correct(text): | |
| # Step 1: Paraphrase the text | |
| paraphrased_text = paraphrase_with_spacy_nltk(text) | |
| # Step 2: Capitalize sentences and proper nouns | |
| capitalized_text = capitalize_sentences_and_nouns(paraphrased_text) | |
| # Step 3: Correct grammar | |
| final_text = correct_grammar(capitalized_text) | |
| return final_text | |
| # Gradio interface definition | |
| with gr.Blocks() as interface: | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_input = gr.Textbox(lines=5, label="Input Text") | |
| detect_button = gr.Button("AI Detection") | |
| paraphrase_button = gr.Button("Paraphrase & Correct") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Output") | |
| detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text) | |
| paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_t | |