Spaces:
Running
Running
File size: 8,882 Bytes
b0503ee 84669bc b7577da 7feda08 90fff6b 7fc55d1 9ea0d50 96d6bc7 6d0ac04 90fff6b 9ea0d50 7fc55d1 51568dc 6ba2176 9ea0d50 6ba2176 fbc26ed 6ba2176 7feda08 59b2b8e 9ea0d50 55748cc 8013380 9ea0d50 1cf3f25 90fff6b 7c294cd 92af867 2b58aa4 9ea0d50 55748cc 96d6bc7 55748cc 96d6bc7 55748cc 96d6bc7 55748cc 96d6bc7 59b2b8e 96d6bc7 59b2b8e 96d6bc7 59b2b8e 96d6bc7 2b58aa4 96d6bc7 2b58aa4 96d6bc7 90fff6b 96d6bc7 92af867 2b58aa4 90fff6b e21ee90 59b2b8e 96d6bc7 59b2b8e 847e3e1 90fff6b c163eb2 90fff6b c35eed6 90fff6b c35eed6 96d6bc7 aed9390 96d6bc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import random
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Initialize the spell checker
spell = SpellChecker()
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Function to get synonyms using NLTK WordNet
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Function to remove redundant and meaningless words
def remove_redundant_words(text):
doc = nlp(text)
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
return ' '.join(filtered_text)
# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Function to force capitalization of the first letter of every sentence
def force_first_letter_capital(text):
sentences = text.split(". ") # Split by period to get each sentence
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
return ". ".join(capitalized_sentences)
# Function to handle possessive 's and retain original meaning
def handle_possessives(text):
doc = nlp(text)
corrected_text = []
for token in doc:
# If token is a possessive form (e.g., 'Earth's'), retain its original form
if token.text.endswith("'s") or token.text == "'s":
corrected_text.append(token.text) # Keep it as is, even if a synonym is found
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct tense errors in a sentence
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
corrected_text.append(lemma)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct singular/plural errors
def correct_singular_plural_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN": # Singular noun
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
corrected_text.append(token.lemma_ + 's')
else:
corrected_text.append(token.text)
elif token.tag_ == "NNS": # Plural noun
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
corrected_text.append(token.lemma_)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to check and correct article errors
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text in ['a', 'an']:
next_token = token.nbor(1)
if token.text == "a" and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
corrected_text.append("a")
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to dynamically choose synonyms with more options
def dynamic_synonyms(token, pos):
synonyms = get_synonyms_nltk(token.lemma_, pos)
# Choose a random synonym to increase variety
if synonyms:
random_synonym = random.choice(synonyms)
return random_synonym
return token.text
# Function to rephrase text and replace words with more versatile synonyms
def versatile_rephrase(text):
doc = nlp(text)
rephrased_text = []
for token in doc:
pos_tag = None
if token.pos_ == "NOUN":
pos_tag = wordnet.NOUN
elif token.pos_ == "VERB":
pos_tag = wordnet.VERB
elif token.pos_ == "ADJ":
pos_tag = wordnet.ADJ
elif token.pos_ == "ADV":
pos_tag = wordnet.ADV
if pos_tag:
synonym = dynamic_synonyms(token, pos_tag)
if token.pos_ == "VERB":
if token.tag_ == "VBG": # Present participle (e.g., running)
synonym = synonym + 'ing'
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
synonym = synonym + 'ed'
elif token.tag_ == "VBZ": # Third-person singular present
synonym = synonym + 's'
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
synonym += 's' if not synonym ends with 's' else ""
rephrased_text.append(synonym)
else:
rephrased_text.append(token.text)
return ' '.join(rephrased_text)
# Function to retain the structure of the input text (headings, paragraphs, line breaks)
def retain_structure(text):
lines = text.split("\n")
formatted_lines = []
for line in lines:
if line.strip().isupper(): # Heading if all caps
formatted_lines.append(f"# {line.strip()}") # Treat it as a heading
else:
formatted_lines.append(line) # Otherwise, it's a paragraph or normal text
return "\n".join(formatted_lines)
# Function to paraphrase and correct grammar with enhanced accuracy and retain structure
def paraphrase_and_correct_with_structure(text):
structured_text = retain_structure(text)
# Rephrase with more versatile synonyms while maintaining grammatical forms
paraphrased_text = versatile_rephrase(structured_text)
# Apply grammatical corrections on the rephrased text
paraphrased_text = remove_redundant_words(paraphrased_text)
paraphrased_text = capitalize_sentences_and_nouns(paraphrased_text)
paraphrased_text = force_first_letter_capital(paraphrased_text)
paraphrased_text = handle_possessives(paraphrased_text)
paraphrased_text = correct_article_errors(paraphrased_text)
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
paraphrased_text = correct_tense_errors(paraphrased_text)
paraphrased_text = correct_double_negatives(paraphrased_text)
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
paraphrased_text = correct_spelling(paraphrased_text)
return paraphrased_text
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
with gr.Tab("Paraphrasing & Grammar Correction"):
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
button2 = gr.Button("🔄 Paraphrase and Correct")
result2 = gr.Textbox(lines=5, label='Corrected Text')
# Connect the paraphrasing and correction function to the button
button2.click(fn=paraphrase_and_correct_with_structure, inputs=t2, outputs=result2)
demo.launch(share=True)
|