Spaces:
Running
Running
File size: 6,185 Bytes
b0503ee 84669bc b7577da 7feda08 51568dc 7fc55d1 b815c8c 9079e3b 51568dc 7fc55d1 51568dc 6ba2176 51568dc 6ba2176 c163eb2 6ba2176 7feda08 e5063d8 b815c8c e5063d8 b815c8c e5063d8 b815c8c e5063d8 a4c0f0e c163eb2 51568dc b815c8c 51568dc aed9390 a4c0f0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from grammarChecker.util import check_becauseError, check_butError, check_TenseError, check_articleError
from pattern.en import conjugate, tenses
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Function to check and correct tense consistency in sentences using Pattern.en
def check_tense_consistency(text):
doc = nlp(text)
corrected_sentences = []
for sent in doc.sents:
verbs = [token for token in sent if token.pos_ == 'VERB']
if verbs:
# Find the most common tense in the sentence
common_tense = None
for verb in verbs:
verb_tense = tenses(verb.text)
if verb_tense:
common_tense = verb_tense[0][0]
break
# Conjugate all verbs to the common tense if there's inconsistency
corrected_sentence = []
for token in sent:
if token.pos_ == 'VERB' and common_tense:
corrected_verb = conjugate(token.text, tense=common_tense)
corrected_sentence.append(corrected_verb)
else:
corrected_sentence.append(token.text)
corrected_sentences.append(' '.join(corrected_sentence))
else:
corrected_sentences.append(sent.text)
return ' '.join(corrected_sentences)
# Function to perform grammar and structure corrections using external grammar functions
def grammar_correction(text):
error_count_because, corrected_text_because = check_becauseError(text)
error_count_but, corrected_text_but = check_butError(corrected_text_because)
error_count_tense, corrected_text_tense = check_TenseError(corrected_text_but)
error_count_article, final_corrected_text = check_articleError(corrected_text_tense)
return final_corrected_text
# Paraphrasing function using SpaCy and NLTK (Humanifier)
def paraphrase_with_spacy_nltk(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
# Map SpaCy POS tags to WordNet POS tags
pos = None
if token.pos_ in {"NOUN"}:
pos = wordnet.NOUN
elif token.pos_ in {"VERB"}:
pos = wordnet.VERB
elif token.pos_ in {"ADJ"}:
pos = wordnet.ADJ
elif token.pos_ in {"ADV"}:
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
# Replace with a synonym only if it makes sense
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
# Join the words back into a sentence
paraphrased_sentence = ' '.join(paraphrased_words)
# Capitalize sentences and proper nouns
corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence)
return corrected_text
# Combined function: Paraphrase -> Grammar Correction -> Capitalization -> Tense Consistency (Humanifier)
def paraphrase_and_correct(text):
# Step 1: Paraphrase the text
paraphrased_text = paraphrase_with_spacy_nltk(text)
# Step 2: Grammar and structure corrections
grammatically_corrected_text = grammar_correction(paraphrased_text)
# Step 3: Capitalize sentences and proper nouns
capitalized_text = capitalize_sentences_and_nouns(grammatically_corrected_text)
# Step 4: Check and correct tense consistency
final_text = check_tense_consistency(capitalized_text)
return final_text
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing and correction function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the app with the remaining functionalities
demo.launch()
|