Spaces:
Running
Running
File size: 3,954 Bytes
b0503ee 84669bc b7577da 7feda08 51568dc 7fc55d1 9079e3b 51568dc 7fc55d1 51568dc 6ba2176 51568dc 6ba2176 c163eb2 6ba2176 7feda08 b7577da 51568dc b7577da 51568dc b7577da c163eb2 b7577da 96ac1ff b7577da 51568dc b7577da 51568dc b7577da c163eb2 b7577da 51568dc b7577da 51568dc b7577da 51568dc c163eb2 51568dc 96ac1ff b7577da aed9390 51568dc c163eb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Grammar, Tense, and Singular/Plural Correction Functions
# Correct article errors (e.g., "a apple" -> "an apple")
def check_article_error(text):
tokens = nltk.pos_tag(nltk.word_tokenize(text))
corrected_tokens = []
for i, token in enumerate(tokens):
word, pos = token
if word.lower() == 'a' and i < len(tokens) - 1 and tokens[i + 1][1] == 'NN':
corrected_tokens.append('an' if tokens[i + 1][0][0] in 'aeiou' else 'a')
else:
corrected_tokens.append(word)
return ' '.join(corrected_tokens)
# Correct tense errors (e.g., "She has go out" -> "She has gone out")
def check_tense_error(text):
tokens = nltk.pos_tag(nltk.word_tokenize(text))
corrected_tokens = []
for word, pos in tokens:
if word == "go" and pos == "VB":
corrected_tokens.append("gone")
elif word == "know" and pos == "VB":
corrected_tokens.append("known")
else:
corrected_tokens.append(word)
return ' '.join(corrected_tokens)
# Correct singular/plural errors (e.g., "There are many chocolate" -> "There are many chocolates")
def check_pluralization_error(text):
tokens = nltk.pos_tag(nltk.word_tokenize(text))
corrected_tokens = []
for word, pos in tokens:
if word == "chocolate" and pos == "NN":
corrected_tokens.append("chocolates")
elif word == "kids" and pos == "NNS":
corrected_tokens.append("kid")
else:
corrected_tokens.append(word)
return ' '.join(corrected_tokens)
# Combined function to correct grammar, tense, and singular/plural errors
def correct_grammar_tense_plural(text):
text = check_article_error(text)
text = check_tense_error(text)
text = check_pluralization_error(text)
return text
# Gradio app setup with three tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
with gr.Tab("Grammar Correction"):
grammar_input = gr.Textbox(lines=5, label="Input Text")
grammar_button = gr.Button("Correct Grammar")
grammar_output = gr.Textbox(label="Corrected Text")
# Connect the custom grammar, tense, and plural correction function to the button
grammar_button.click(correct_grammar_tense_plural, inputs=grammar_input, outputs=grammar_output)
# Launch the app with all functionalities
demo.launch()
|