File size: 6,333 Bytes
b0503ee
84669bc
b7577da
7feda08
51568dc
7fc55d1
 
9367038
de007f1
847e3e1
 
6d0ac04
e00f367
 
 
 
 
 
 
 
 
7fc55d1
51568dc
6ba2176
e00f367
6ba2176
 
 
c163eb2
6ba2176
7feda08
f036c05
 
 
15f7e94
 
 
 
e00f367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de007f1
e00f367
 
 
de007f1
e00f367
 
de007f1
 
 
e00f367
 
de007f1
e00f367
 
de007f1
e00f367
 
 
de007f1
e00f367
 
de007f1
 
 
 
e00f367
 
de007f1
e00f367
 
9367038
847e3e1
9367038
 
 
de007f1
847e3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de007f1
e5063d8
 
 
cb8dab7
e5063d8
de007f1
e5063d8
15f7e94
e5063d8
15f7e94
e5063d8
15f7e94
e5063d8
15f7e94
e5063d8
cb8dab7
e5063d8
 
de007f1
15f7e94
d35a2d1
e5063d8
 
 
847e3e1
e5063d8
e6cd790
e5063d8
463d2eb
d2a1a53
e5063d8
847e3e1
 
15f7e94
847e3e1
e5063d8
a4c0f0e
c163eb2
51568dc
 
 
 
d35a2d1
 
51568dc
 
 
d35a2d1
51568dc
847e3e1
d35a2d1
51568dc
aed9390
de007f1
f036c05
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from textblob import TextBlob
from pattern.en import conjugate, lemma, pluralize, singularize
from gector.gec_model import GecBERTModel  # Import GECToR Model
from utils.helpers import read_lines, normalize  # GECToR utilities

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed for Humanifier
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
    synsets = wordnet.synsets(word, pos=pos)
    if synsets:
        lemmas = synsets[0].lemmas()
        return [lemma.name() for lemma in lemmas]
    return []

# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Function to correct tense errors using Pattern
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    
    for token in doc:
        if token.pos_ == "VERB":
            # Use conjugate from Pattern to adjust the tense of the verb
            verb_form = conjugate(lemma(token.text), tense='past')  # Example: fix to past tense
            corrected_text.append(verb_form)
        else:
            corrected_text.append(token.text)
    
    return ' '.join(corrected_text)

# Function to correct singular/plural errors using Pattern
def correct_singular_plural_errors(text):
    doc = nlp(text)
    corrected_text = []

    for token in doc:
        if token.pos_ == "NOUN":
            if token.tag_ == "NN":  # Singular noun
                corrected_text.append(singularize(token.text))
            elif token.tag_ == "NNS":  # Plural noun
                corrected_text.append(pluralize(token.text))
        else:
            corrected_text.append(token.text)

    return ' '.join(corrected_text)

# Function to correct overall grammar using TextBlob
def correct_grammar_textblob(text):
    blob = TextBlob(text)
    corrected_text = str(blob.correct())  # TextBlob's built-in grammar correction
    return corrected_text

# Initialize GECToR Model for Grammar Correction
def load_gector_model():
    model_path = ["gector/roberta_1_gector.th"]  # Ensure model file is placed correctly
    vocab_path = "output_vocabulary"
    model = GecBERTModel(vocab_path=vocab_path,
                         model_paths=model_path,
                         max_len=50,
                         min_len=3,
                         iterations=5,
                         min_error_probability=0.0,
                         lowercase_tokens=0,
                         model_name="roberta",
                         special_tokens_fix=1,
                         log=False,
                         confidence=0,
                         del_confidence=0,
                         is_ensemble=False,
                         weigths=None)
    return model

# Load the GECToR model
gector_model = load_gector_model()

# Function to correct grammar using GECToR
def correct_grammar_gector(text):
    sentences = [text.split()]
    corrected_sentences, _ = gector_model.handle_batch(sentences)
    return " ".join(corrected_sentences[0])

# Paraphrasing function using SpaCy and NLTK (Humanifier)
def paraphrase_with_spacy_nltk(text):
    doc = nlp(text)
    paraphrased_words = []
    
    for token in doc:
        # Map SpaCy POS tags to WordNet POS tags
        pos = None
        if token.pos_ in {"NOUN"}:
            pos = wordnet.NOUN
        elif token.pos_ in {"VERB"}:
            pos = wordnet.VERB
        elif token.pos_ in {"ADJ"}:
            pos = wordnet.ADJ
        elif token.pos_ in {"ADV"}:
            pos = wordnet.ADV
        
        synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
        
        # Replace with a synonym only if it makes sense
        if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
            paraphrased_words.append(synonyms[0])
        else:
            paraphrased_words.append(token.text)
    
    return ' '.join(paraphrased_words)

# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
def paraphrase_and_correct(text):
    # Step 1: Paraphrase the text
    paraphrased_text = paraphrase_with_spacy_nltk(text)
    
    # Step 2: Apply grammatical corrections using GECToR
    corrected_text = correct_grammar_gector(paraphrased_text)
    
    return corrected_text

# Gradio app setup with two tabs
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("🤖 Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
        score1 = gr.Textbox(lines=1, label='Prob')

        button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
    
    with gr.Tab("Humanifier"):
        text_input = gr.Textbox(lines=5, label="Input Text")
        paraphrase_button = gr.Button("Paraphrase & Correct")
        output_text = gr.Textbox(label="Paraphrased and Corrected Text")

        paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)

# Launch the app
demo.launch()