Spaces:
Running
Running
File size: 6,333 Bytes
b0503ee 84669bc b7577da 7feda08 51568dc 7fc55d1 9367038 de007f1 847e3e1 6d0ac04 e00f367 7fc55d1 51568dc 6ba2176 e00f367 6ba2176 c163eb2 6ba2176 7feda08 f036c05 15f7e94 e00f367 de007f1 e00f367 de007f1 e00f367 de007f1 e00f367 de007f1 e00f367 de007f1 e00f367 de007f1 e00f367 de007f1 e00f367 de007f1 e00f367 9367038 847e3e1 9367038 de007f1 847e3e1 de007f1 e5063d8 cb8dab7 e5063d8 de007f1 e5063d8 15f7e94 e5063d8 15f7e94 e5063d8 15f7e94 e5063d8 15f7e94 e5063d8 cb8dab7 e5063d8 de007f1 15f7e94 d35a2d1 e5063d8 847e3e1 e5063d8 e6cd790 e5063d8 463d2eb d2a1a53 e5063d8 847e3e1 15f7e94 847e3e1 e5063d8 a4c0f0e c163eb2 51568dc d35a2d1 51568dc d35a2d1 51568dc 847e3e1 d35a2d1 51568dc aed9390 de007f1 f036c05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from textblob import TextBlob
from pattern.en import conjugate, lemma, pluralize, singularize
from gector.gec_model import GecBERTModel # Import GECToR Model
from utils.helpers import read_lines, normalize # GECToR utilities
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Function to correct tense errors using Pattern
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB":
# Use conjugate from Pattern to adjust the tense of the verb
verb_form = conjugate(lemma(token.text), tense='past') # Example: fix to past tense
corrected_text.append(verb_form)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct singular/plural errors using Pattern
def correct_singular_plural_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN": # Singular noun
corrected_text.append(singularize(token.text))
elif token.tag_ == "NNS": # Plural noun
corrected_text.append(pluralize(token.text))
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct overall grammar using TextBlob
def correct_grammar_textblob(text):
blob = TextBlob(text)
corrected_text = str(blob.correct()) # TextBlob's built-in grammar correction
return corrected_text
# Initialize GECToR Model for Grammar Correction
def load_gector_model():
model_path = ["gector/roberta_1_gector.th"] # Ensure model file is placed correctly
vocab_path = "output_vocabulary"
model = GecBERTModel(vocab_path=vocab_path,
model_paths=model_path,
max_len=50,
min_len=3,
iterations=5,
min_error_probability=0.0,
lowercase_tokens=0,
model_name="roberta",
special_tokens_fix=1,
log=False,
confidence=0,
del_confidence=0,
is_ensemble=False,
weigths=None)
return model
# Load the GECToR model
gector_model = load_gector_model()
# Function to correct grammar using GECToR
def correct_grammar_gector(text):
sentences = [text.split()]
corrected_sentences, _ = gector_model.handle_batch(sentences)
return " ".join(corrected_sentences[0])
# Paraphrasing function using SpaCy and NLTK (Humanifier)
def paraphrase_with_spacy_nltk(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
# Map SpaCy POS tags to WordNet POS tags
pos = None
if token.pos_ in {"NOUN"}:
pos = wordnet.NOUN
elif token.pos_ in {"VERB"}:
pos = wordnet.VERB
elif token.pos_ in {"ADJ"}:
pos = wordnet.ADJ
elif token.pos_ in {"ADV"}:
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
# Replace with a synonym only if it makes sense
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
return ' '.join(paraphrased_words)
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
def paraphrase_and_correct(text):
# Step 1: Paraphrase the text
paraphrased_text = paraphrase_with_spacy_nltk(text)
# Step 2: Apply grammatical corrections using GECToR
corrected_text = correct_grammar_gector(paraphrased_text)
return corrected_text
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased and Corrected Text")
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the app
demo.launch()
|